Metamath Proof Explorer


Theorem iunmapss

Description: The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses iunmapss.x xφ
iunmapss.a φAV
iunmapss.b φxABW
Assertion iunmapss φxABCxABC

Proof

Step Hyp Ref Expression
1 iunmapss.x xφ
2 iunmapss.a φAV
3 iunmapss.b φxABW
4 3 ex φxABW
5 1 4 ralrimi φxABW
6 iunexg AVxABWxABV
7 2 5 6 syl2anc φxABV
8 7 adantr φxAxABV
9 ssiun2 xABxAB
10 9 adantl φxABxAB
11 mapss xABVBxABBCxABC
12 8 10 11 syl2anc φxABCxABC
13 12 ex φxABCxABC
14 1 13 ralrimi φxABCxABC
15 nfiu1 _xxAB
16 nfcv _x𝑚
17 nfcv _xC
18 15 16 17 nfov _xxABC
19 18 iunssf xABCxABCxABCxABC
20 14 19 sylibr φxABCxABC