Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008) (Proof shortened by Mario Carneiro, 30-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ivth.1 | |
|
ivth.2 | |
||
ivth.3 | |
||
ivth.4 | |
||
ivth.5 | |
||
ivth.7 | |
||
ivth.8 | |
||
ivth.9 | |
||
Assertion | ivth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | |
|
2 | ivth.2 | |
|
3 | ivth.3 | |
|
4 | ivth.4 | |
|
5 | ivth.5 | |
|
6 | ivth.7 | |
|
7 | ivth.8 | |
|
8 | ivth.9 | |
|
9 | fveq2 | |
|
10 | 9 | breq1d | |
11 | 10 | cbvrabv | |
12 | eqid | |
|
13 | 1 2 3 4 5 6 7 8 11 12 | ivthlem3 | |
14 | fveqeq2 | |
|
15 | 14 | rspcev | |
16 | 13 15 | syl | |