Metamath Proof Explorer


Theorem ivth

Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008) (Proof shortened by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypotheses ivth.1 φA
ivth.2 φB
ivth.3 φU
ivth.4 φA<B
ivth.5 φABD
ivth.7 φF:Dcn
ivth.8 φxABFx
ivth.9 φFA<UU<FB
Assertion ivth φcABFc=U

Proof

Step Hyp Ref Expression
1 ivth.1 φA
2 ivth.2 φB
3 ivth.3 φU
4 ivth.4 φA<B
5 ivth.5 φABD
6 ivth.7 φF:Dcn
7 ivth.8 φxABFx
8 ivth.9 φFA<UU<FB
9 fveq2 y=xFy=Fx
10 9 breq1d y=xFyUFxU
11 10 cbvrabv yAB|FyU=xAB|FxU
12 eqid supyAB|FyU<=supyAB|FyU<
13 1 2 3 4 5 6 7 8 11 12 ivthlem3 φsupyAB|FyU<ABFsupyAB|FyU<=U
14 fveqeq2 c=supyAB|FyU<Fc=UFsupyAB|FyU<=U
15 14 rspcev supyAB|FyU<ABFsupyAB|FyU<=UcABFc=U
16 13 15 syl φcABFc=U