Metamath Proof Explorer


Theorem jplem1

Description: Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypothesis jplem1.1 AC
Assertion jplem1 unormu=1uAnormprojAu2=1

Proof

Step Hyp Ref Expression
1 jplem1.1 AC
2 pjnorm2 ACuuAnormprojAu=normu
3 1 2 mpan uuAnormprojAu=normu
4 eqeq2 normu=1normprojAu=normunormprojAu=1
5 3 4 sylan9bb unormu=1uAnormprojAu=1
6 sq1 12=1
7 6 eqeq2i normprojAu2=12normprojAu2=1
8 1 pjhcli uprojAu
9 normcl projAunormprojAu
10 8 9 syl unormprojAu
11 normge0 projAu0normprojAu
12 8 11 syl u0normprojAu
13 1re 1
14 0le1 01
15 sq11 normprojAu0normprojAu101normprojAu2=12normprojAu=1
16 13 14 15 mpanr12 normprojAu0normprojAunormprojAu2=12normprojAu=1
17 10 12 16 syl2anc unormprojAu2=12normprojAu=1
18 7 17 bitr3id unormprojAu2=1normprojAu=1
19 18 adantr unormu=1normprojAu2=1normprojAu=1
20 5 19 bitr4d unormu=1uAnormprojAu2=1