Metamath Proof Explorer


Theorem kerlmhm

Description: The kernel of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)

Ref Expression
Hypotheses kerlmhm.1 0 ˙ = 0 U
kerlmhm.k K = V 𝑠 F -1 0 ˙
Assertion kerlmhm V LVec F V LMHom U K LVec

Proof

Step Hyp Ref Expression
1 kerlmhm.1 0 ˙ = 0 U
2 kerlmhm.k K = V 𝑠 F -1 0 ˙
3 eqid F -1 0 ˙ = F -1 0 ˙
4 eqid LSubSp V = LSubSp V
5 3 1 4 lmhmkerlss F V LMHom U F -1 0 ˙ LSubSp V
6 2 4 lsslvec V LVec F -1 0 ˙ LSubSp V K LVec
7 5 6 sylan2 V LVec F V LMHom U K LVec