Metamath Proof Explorer


Theorem knoppcnlem1

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses knoppcnlem1.f F=yn0CnT2 Nny
knoppcnlem1.2 φA
knoppcnlem1.3 φM0
Assertion knoppcnlem1 φFAM=CMT2 NMA

Proof

Step Hyp Ref Expression
1 knoppcnlem1.f F=yn0CnT2 Nny
2 knoppcnlem1.2 φA
3 knoppcnlem1.3 φM0
4 oveq2 y=A2 Nny=2 NnA
5 4 fveq2d y=AT2 Nny=T2 NnA
6 5 oveq2d y=ACnT2 Nny=CnT2 NnA
7 6 mpteq2dv y=An0CnT2 Nny=n0CnT2 NnA
8 nn0ex 0V
9 8 mptex n0CnT2 NnAV
10 9 a1i φn0CnT2 NnAV
11 1 7 2 10 fvmptd3 φFA=n0CnT2 NnA
12 oveq2 n=MCn=CM
13 oveq2 n=M2 Nn=2 NM
14 13 fvoveq1d n=MT2 NnA=T2 NMA
15 12 14 oveq12d n=MCnT2 NnA=CMT2 NMA
16 15 adantl φn=MCnT2 NnA=CMT2 NMA
17 ovexd φCMT2 NMAV
18 11 16 3 17 fvmptd φFAM=CMT2 NMA