Metamath Proof Explorer


Theorem lanpropd

Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same left Kan extensions. (Contributed by Zhi Wang, 21-Nov-2025)

Ref Expression
Hypotheses lanpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
lanpropd.2 φ comp 𝑓 A = comp 𝑓 B
lanpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
lanpropd.4 φ comp 𝑓 C = comp 𝑓 D
lanpropd.5 φ Hom 𝑓 E = Hom 𝑓 F
lanpropd.6 φ comp 𝑓 E = comp 𝑓 F
lanpropd.a φ A V
lanpropd.b φ B V
lanpropd.c φ C V
lanpropd.d φ D V
lanpropd.e φ E V
lanpropd.f φ F V
Assertion lanpropd Could not format assertion : No typesetting found for |- ( ph -> ( <. A , C >. Lan E ) = ( <. B , D >. Lan F ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 lanpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
2 lanpropd.2 φ comp 𝑓 A = comp 𝑓 B
3 lanpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
4 lanpropd.4 φ comp 𝑓 C = comp 𝑓 D
5 lanpropd.5 φ Hom 𝑓 E = Hom 𝑓 F
6 lanpropd.6 φ comp 𝑓 E = comp 𝑓 F
7 lanpropd.a φ A V
8 lanpropd.b φ B V
9 lanpropd.c φ C V
10 lanpropd.d φ D V
11 lanpropd.e φ E V
12 lanpropd.f φ F V
13 1 2 3 4 7 8 9 10 funcpropd φ A Func C = B Func D
14 1 2 5 6 7 8 11 12 funcpropd φ A Func E = B Func F
15 14 adantr φ f A Func C A Func E = B Func F
16 3 adantr φ f A Func C x A Func E Hom 𝑓 C = Hom 𝑓 D
17 4 adantr φ f A Func C x A Func E comp 𝑓 C = comp 𝑓 D
18 5 adantr φ f A Func C x A Func E Hom 𝑓 E = Hom 𝑓 F
19 6 adantr φ f A Func C x A Func E comp 𝑓 E = comp 𝑓 F
20 funcrcl f A Func C A Cat C Cat
21 20 ad2antrl φ f A Func C x A Func E A Cat C Cat
22 21 simprd φ f A Func C x A Func E C Cat
23 10 adantr φ f A Func C x A Func E D V
24 16 17 22 23 catpropd φ f A Func C x A Func E C Cat D Cat
25 22 24 mpbid φ f A Func C x A Func E D Cat
26 funcrcl x A Func E A Cat E Cat
27 26 ad2antll φ f A Func C x A Func E A Cat E Cat
28 27 simprd φ f A Func C x A Func E E Cat
29 12 adantr φ f A Func C x A Func E F V
30 18 19 28 29 catpropd φ f A Func C x A Func E E Cat F Cat
31 28 30 mpbid φ f A Func C x A Func E F Cat
32 16 17 18 19 22 25 28 31 fucpropd φ f A Func C x A Func E C FuncCat E = D FuncCat F
33 1 adantr φ f A Func C x A Func E Hom 𝑓 A = Hom 𝑓 B
34 2 adantr φ f A Func C x A Func E comp 𝑓 A = comp 𝑓 B
35 21 simpld φ f A Func C x A Func E A Cat
36 8 adantr φ f A Func C x A Func E B V
37 33 34 35 36 catpropd φ f A Func C x A Func E A Cat B Cat
38 35 37 mpbid φ f A Func C x A Func E B Cat
39 33 34 18 19 35 38 28 31 fucpropd φ f A Func C x A Func E A FuncCat E = B FuncCat F
40 32 39 oveq12d Could not format ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( ( C FuncCat E ) UP ( A FuncCat E ) ) = ( ( D FuncCat F ) UP ( B FuncCat F ) ) ) : No typesetting found for |- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( ( C FuncCat E ) UP ( A FuncCat E ) ) = ( ( D FuncCat F ) UP ( B FuncCat F ) ) ) with typecode |-
41 simprl φ f A Func C x A Func E f A Func C
42 16 17 18 19 22 25 28 31 41 prcofpropd Could not format ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( <. C , E >. -o.F f ) = ( <. D , F >. -o.F f ) ) : No typesetting found for |- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( <. C , E >. -o.F f ) = ( <. D , F >. -o.F f ) ) with typecode |-
43 eqidd φ f A Func C x A Func E x = x
44 40 42 43 oveq123d Could not format ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( ( <. C , E >. -o.F f ) ( ( C FuncCat E ) UP ( A FuncCat E ) ) x ) = ( ( <. D , F >. -o.F f ) ( ( D FuncCat F ) UP ( B FuncCat F ) ) x ) ) : No typesetting found for |- ( ( ph /\ ( f e. ( A Func C ) /\ x e. ( A Func E ) ) ) -> ( ( <. C , E >. -o.F f ) ( ( C FuncCat E ) UP ( A FuncCat E ) ) x ) = ( ( <. D , F >. -o.F f ) ( ( D FuncCat F ) UP ( B FuncCat F ) ) x ) ) with typecode |-
45 13 15 44 mpoeq123dva Could not format ( ph -> ( f e. ( A Func C ) , x e. ( A Func E ) |-> ( ( <. C , E >. -o.F f ) ( ( C FuncCat E ) UP ( A FuncCat E ) ) x ) ) = ( f e. ( B Func D ) , x e. ( B Func F ) |-> ( ( <. D , F >. -o.F f ) ( ( D FuncCat F ) UP ( B FuncCat F ) ) x ) ) ) : No typesetting found for |- ( ph -> ( f e. ( A Func C ) , x e. ( A Func E ) |-> ( ( <. C , E >. -o.F f ) ( ( C FuncCat E ) UP ( A FuncCat E ) ) x ) ) = ( f e. ( B Func D ) , x e. ( B Func F ) |-> ( ( <. D , F >. -o.F f ) ( ( D FuncCat F ) UP ( B FuncCat F ) ) x ) ) ) with typecode |-
46 eqid C FuncCat E = C FuncCat E
47 eqid A FuncCat E = A FuncCat E
48 46 47 7 9 11 lanfval Could not format ( ph -> ( <. A , C >. Lan E ) = ( f e. ( A Func C ) , x e. ( A Func E ) |-> ( ( <. C , E >. -o.F f ) ( ( C FuncCat E ) UP ( A FuncCat E ) ) x ) ) ) : No typesetting found for |- ( ph -> ( <. A , C >. Lan E ) = ( f e. ( A Func C ) , x e. ( A Func E ) |-> ( ( <. C , E >. -o.F f ) ( ( C FuncCat E ) UP ( A FuncCat E ) ) x ) ) ) with typecode |-
49 eqid D FuncCat F = D FuncCat F
50 eqid B FuncCat F = B FuncCat F
51 49 50 8 10 12 lanfval Could not format ( ph -> ( <. B , D >. Lan F ) = ( f e. ( B Func D ) , x e. ( B Func F ) |-> ( ( <. D , F >. -o.F f ) ( ( D FuncCat F ) UP ( B FuncCat F ) ) x ) ) ) : No typesetting found for |- ( ph -> ( <. B , D >. Lan F ) = ( f e. ( B Func D ) , x e. ( B Func F ) |-> ( ( <. D , F >. -o.F f ) ( ( D FuncCat F ) UP ( B FuncCat F ) ) x ) ) ) with typecode |-
52 45 48 51 3eqtr4d Could not format ( ph -> ( <. A , C >. Lan E ) = ( <. B , D >. Lan F ) ) : No typesetting found for |- ( ph -> ( <. A , C >. Lan E ) = ( <. B , D >. Lan F ) ) with typecode |-