Metamath Proof Explorer


Theorem latjle12

Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. ( chlub analog.) (Contributed by NM, 17-Sep-2011)

Ref Expression
Hypotheses latlej.b B=BaseK
latlej.l ˙=K
latlej.j ˙=joinK
Assertion latjle12 KLatXBYBZBX˙ZY˙ZX˙Y˙Z

Proof

Step Hyp Ref Expression
1 latlej.b B=BaseK
2 latlej.l ˙=K
3 latlej.j ˙=joinK
4 latpos KLatKPoset
5 4 adantr KLatXBYBZBKPoset
6 simpr1 KLatXBYBZBXB
7 simpr2 KLatXBYBZBYB
8 simpr3 KLatXBYBZBZB
9 eqid meetK=meetK
10 simpl KLatXBYBZBKLat
11 1 3 9 10 6 7 latcl2 KLatXBYBZBXYdom˙XYdommeetK
12 11 simpld KLatXBYBZBXYdom˙
13 1 2 3 5 6 7 8 12 joinle KLatXBYBZBX˙ZY˙ZX˙Y˙Z