Metamath Proof Explorer


Theorem latm12

Description: A rearrangement of lattice meet. ( in12 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses olmass.b B=BaseK
olmass.m ˙=meetK
Assertion latm12 KOLXBYBZBX˙Y˙Z=Y˙X˙Z

Proof

Step Hyp Ref Expression
1 olmass.b B=BaseK
2 olmass.m ˙=meetK
3 ollat KOLKLat
4 3 adantr KOLXBYBZBKLat
5 simpr1 KOLXBYBZBXB
6 simpr2 KOLXBYBZBYB
7 1 2 latmcom KLatXBYBX˙Y=Y˙X
8 4 5 6 7 syl3anc KOLXBYBZBX˙Y=Y˙X
9 8 oveq1d KOLXBYBZBX˙Y˙Z=Y˙X˙Z
10 1 2 latmassOLD KOLXBYBZBX˙Y˙Z=X˙Y˙Z
11 simpr3 KOLXBYBZBZB
12 6 5 11 3jca KOLXBYBZBYBXBZB
13 1 2 latmassOLD KOLYBXBZBY˙X˙Z=Y˙X˙Z
14 12 13 syldan KOLXBYBZBY˙X˙Z=Y˙X˙Z
15 9 10 14 3eqtr3d KOLXBYBZBX˙Y˙Z=Y˙X˙Z