Metamath Proof Explorer


Theorem latmmdiN

Description: Lattice meet distributes over itself. ( inindi analog.) (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses olmass.b B=BaseK
olmass.m ˙=meetK
Assertion latmmdiN KOLXBYBZBX˙Y˙Z=X˙Y˙X˙Z

Proof

Step Hyp Ref Expression
1 olmass.b B=BaseK
2 olmass.m ˙=meetK
3 ollat KOLKLat
4 3 adantr KOLXBYBZBKLat
5 simpr1 KOLXBYBZBXB
6 1 2 latmidm KLatXBX˙X=X
7 4 5 6 syl2anc KOLXBYBZBX˙X=X
8 7 oveq1d KOLXBYBZBX˙X˙Y˙Z=X˙Y˙Z
9 simpl KOLXBYBZBKOL
10 simpr2 KOLXBYBZBYB
11 simpr3 KOLXBYBZBZB
12 1 2 latm4 KOLXBXBYBZBX˙X˙Y˙Z=X˙Y˙X˙Z
13 9 5 5 10 11 12 syl122anc KOLXBYBZBX˙X˙Y˙Z=X˙Y˙X˙Z
14 8 13 eqtr3d KOLXBYBZBX˙Y˙Z=X˙Y˙X˙Z