Metamath Proof Explorer


Theorem lautset

Description: The set of lattice automorphisms. (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses lautset.b B=BaseK
lautset.l ˙=K
lautset.i I=LAutK
Assertion lautset KAI=f|f:B1-1 ontoBxByBx˙yfx˙fy

Proof

Step Hyp Ref Expression
1 lautset.b B=BaseK
2 lautset.l ˙=K
3 lautset.i I=LAutK
4 elex KAKV
5 fveq2 k=KBasek=BaseK
6 5 1 eqtr4di k=KBasek=B
7 6 f1oeq2d k=Kf:Basek1-1 ontoBasekf:B1-1 ontoBasek
8 f1oeq3 Basek=Bf:B1-1 ontoBasekf:B1-1 ontoB
9 6 8 syl k=Kf:B1-1 ontoBasekf:B1-1 ontoB
10 7 9 bitrd k=Kf:Basek1-1 ontoBasekf:B1-1 ontoB
11 fveq2 k=Kk=K
12 11 2 eqtr4di k=Kk=˙
13 12 breqd k=Kxkyx˙y
14 12 breqd k=Kfxkfyfx˙fy
15 13 14 bibi12d k=Kxkyfxkfyx˙yfx˙fy
16 6 15 raleqbidv k=KyBasekxkyfxkfyyBx˙yfx˙fy
17 6 16 raleqbidv k=KxBasekyBasekxkyfxkfyxByBx˙yfx˙fy
18 10 17 anbi12d k=Kf:Basek1-1 ontoBasekxBasekyBasekxkyfxkfyf:B1-1 ontoBxByBx˙yfx˙fy
19 18 abbidv k=Kf|f:Basek1-1 ontoBasekxBasekyBasekxkyfxkfy=f|f:B1-1 ontoBxByBx˙yfx˙fy
20 df-laut LAut=kVf|f:Basek1-1 ontoBasekxBasekyBasekxkyfxkfy
21 1 fvexi BV
22 21 21 mapval BB=f|f:BB
23 ovex BBV
24 22 23 eqeltrri f|f:BBV
25 f1of f:B1-1 ontoBf:BB
26 25 ss2abi f|f:B1-1 ontoBf|f:BB
27 24 26 ssexi f|f:B1-1 ontoBV
28 simpl f:B1-1 ontoBxByBx˙yfx˙fyf:B1-1 ontoB
29 28 ss2abi f|f:B1-1 ontoBxByBx˙yfx˙fyf|f:B1-1 ontoB
30 27 29 ssexi f|f:B1-1 ontoBxByBx˙yfx˙fyV
31 19 20 30 fvmpt KVLAutK=f|f:B1-1 ontoBxByBx˙yfx˙fy
32 3 31 eqtrid KVI=f|f:B1-1 ontoBxByBx˙yfx˙fy
33 4 32 syl KAI=f|f:B1-1 ontoBxByBx˙yfx˙fy