Metamath Proof Explorer


Theorem lcdvbasecl

Description: Closure of the value of a vector (functional) in the closed kernel dual space. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvbasecl.h H = LHyp K
lcdvbasecl.u U = DVecH K W
lcdvbasecl.v V = Base U
lcdvbasecl.s S = Scalar U
lcdvbasecl.r R = Base S
lcdvbasecl.c C = LCDual K W
lcdvbasecl.e E = Base C
lcdvbasecl.k φ K HL W H
lcdvbasecl.f φ F E
lcdvbasecl.x φ X V
Assertion lcdvbasecl φ F X R

Proof

Step Hyp Ref Expression
1 lcdvbasecl.h H = LHyp K
2 lcdvbasecl.u U = DVecH K W
3 lcdvbasecl.v V = Base U
4 lcdvbasecl.s S = Scalar U
5 lcdvbasecl.r R = Base S
6 lcdvbasecl.c C = LCDual K W
7 lcdvbasecl.e E = Base C
8 lcdvbasecl.k φ K HL W H
9 lcdvbasecl.f φ F E
10 lcdvbasecl.x φ X V
11 1 2 8 dvhlmod φ U LMod
12 eqid LFnl U = LFnl U
13 1 6 7 2 12 8 9 lcdvbaselfl φ F LFnl U
14 4 5 3 12 lflcl U LMod F LFnl U X V F X R
15 11 13 10 14 syl3anc φ F X R