Metamath Proof Explorer


Theorem lcmdvdsb

Description: Biconditional form of lcmdvds . (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmdvdsb KMNMKNKMlcmNK

Proof

Step Hyp Ref Expression
1 lcmdvds KMNMKNKMlcmNK
2 dvdslcm MNMMlcmNNMlcmN
3 2 simpld MNMMlcmN
4 3 3adant1 KMNMMlcmN
5 simp2 KMNM
6 lcmcl MNMlcmN0
7 6 nn0zd MNMlcmN
8 7 3adant1 KMNMlcmN
9 simp1 KMNK
10 dvdstr MMlcmNKMMlcmNMlcmNKMK
11 5 8 9 10 syl3anc KMNMMlcmNMlcmNKMK
12 4 11 mpand KMNMlcmNKMK
13 2 simprd MNNMlcmN
14 13 3adant1 KMNNMlcmN
15 dvdstr NMlcmNKNMlcmNMlcmNKNK
16 15 3com13 KMlcmNNNMlcmNMlcmNKNK
17 8 16 syld3an2 KMNNMlcmNMlcmNKNK
18 14 17 mpand KMNMlcmNKNK
19 12 18 jcad KMNMlcmNKMKNK
20 1 19 impbid KMNMKNKMlcmNK