Description: Biconditional form of lcmdvds . (Contributed by Steve Rodriguez, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | lcmdvdsb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmdvds | |
|
2 | dvdslcm | |
|
3 | 2 | simpld | |
4 | 3 | 3adant1 | |
5 | simp2 | |
|
6 | lcmcl | |
|
7 | 6 | nn0zd | |
8 | 7 | 3adant1 | |
9 | simp1 | |
|
10 | dvdstr | |
|
11 | 5 8 9 10 | syl3anc | |
12 | 4 11 | mpand | |
13 | 2 | simprd | |
14 | 13 | 3adant1 | |
15 | dvdstr | |
|
16 | 15 | 3com13 | |
17 | 8 16 | syld3an2 | |
18 | 14 17 | mpand | |
19 | 12 18 | jcad | |
20 | 1 19 | impbid | |