Metamath Proof Explorer


Theorem lcmdvdsb

Description: Biconditional form of lcmdvds . (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmdvdsb ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀𝐾𝑁𝐾 ) ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 lcmdvds ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀𝐾𝑁𝐾 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) )
2 dvdslcm ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) )
3 2 simpld ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 lcm 𝑁 ) )
4 3 3adant1 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 lcm 𝑁 ) )
5 simp2 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ )
6 lcmcl ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 )
7 6 nn0zd ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℤ )
8 7 3adant1 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℤ )
9 simp1 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℤ )
10 dvdstr ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) → 𝑀𝐾 ) )
11 5 8 9 10 syl3anc ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) → 𝑀𝐾 ) )
12 4 11 mpand ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) ∥ 𝐾𝑀𝐾 ) )
13 2 simprd ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 lcm 𝑁 ) )
14 13 3adant1 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 lcm 𝑁 ) )
15 dvdstr ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) → 𝑁𝐾 ) )
16 15 3com13 ( ( 𝐾 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) → 𝑁𝐾 ) )
17 8 16 syld3an2 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) → 𝑁𝐾 ) )
18 14 17 mpand ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) ∥ 𝐾𝑁𝐾 ) )
19 12 18 jcad ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) ∥ 𝐾 → ( 𝑀𝐾𝑁𝐾 ) ) )
20 1 19 impbid ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀𝐾𝑁𝐾 ) ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) )