Step |
Hyp |
Ref |
Expression |
1 |
|
orass |
⊢ ( ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) ∨ 𝑃 = 0 ) ↔ ( 𝑁 = 0 ∨ ( 𝑀 = 0 ∨ 𝑃 = 0 ) ) ) |
2 |
|
anass |
⊢ ( ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ∧ 𝑃 ∥ 𝑥 ) ↔ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) ) |
3 |
2
|
rabbii |
⊢ { 𝑥 ∈ ℕ ∣ ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ∧ 𝑃 ∥ 𝑥 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) } |
4 |
3
|
infeq1i |
⊢ inf ( { 𝑥 ∈ ℕ ∣ ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ∧ 𝑃 ∥ 𝑥 ) } , ℝ , < ) = inf ( { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) } , ℝ , < ) |
5 |
1 4
|
ifbieq2i |
⊢ if ( ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) ∨ 𝑃 = 0 ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ∧ 𝑃 ∥ 𝑥 ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∨ ( 𝑀 = 0 ∨ 𝑃 = 0 ) ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) } , ℝ , < ) ) |
6 |
|
lcmcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 lcm 𝑀 ) ∈ ℕ0 ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 lcm 𝑀 ) ∈ ℕ0 ) |
8 |
7
|
nn0zd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 lcm 𝑀 ) ∈ ℤ ) |
9 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑃 ∈ ℤ ) |
10 |
|
lcmval |
⊢ ( ( ( 𝑁 lcm 𝑀 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 lcm 𝑀 ) lcm 𝑃 ) = if ( ( ( 𝑁 lcm 𝑀 ) = 0 ∨ 𝑃 = 0 ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( ( 𝑁 lcm 𝑀 ) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) } , ℝ , < ) ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 lcm 𝑀 ) lcm 𝑃 ) = if ( ( ( 𝑁 lcm 𝑀 ) = 0 ∨ 𝑃 = 0 ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( ( 𝑁 lcm 𝑀 ) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) } , ℝ , < ) ) ) |
12 |
|
lcmeq0 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 lcm 𝑀 ) = 0 ↔ ( 𝑁 = 0 ∨ 𝑀 = 0 ) ) ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 lcm 𝑀 ) = 0 ↔ ( 𝑁 = 0 ∨ 𝑀 = 0 ) ) ) |
14 |
13
|
orbi1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( ( 𝑁 lcm 𝑀 ) = 0 ∨ 𝑃 = 0 ) ↔ ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) ∨ 𝑃 = 0 ) ) ) |
15 |
14
|
bicomd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) ∨ 𝑃 = 0 ) ↔ ( ( 𝑁 lcm 𝑀 ) = 0 ∨ 𝑃 = 0 ) ) ) |
16 |
|
nnz |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℤ ) |
18 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
20 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
21 |
|
lcmdvdsb |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ↔ ( 𝑁 lcm 𝑀 ) ∥ 𝑥 ) ) |
22 |
17 19 20 21
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ↔ ( 𝑁 lcm 𝑀 ) ∥ 𝑥 ) ) |
23 |
22
|
anbi1d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℕ ) → ( ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ∧ 𝑃 ∥ 𝑥 ) ↔ ( ( 𝑁 lcm 𝑀 ) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) ) |
24 |
23
|
rabbidva |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → { 𝑥 ∈ ℕ ∣ ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ∧ 𝑃 ∥ 𝑥 ) } = { 𝑥 ∈ ℕ ∣ ( ( 𝑁 lcm 𝑀 ) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) } ) |
25 |
24
|
infeq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → inf ( { 𝑥 ∈ ℕ ∣ ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ∧ 𝑃 ∥ 𝑥 ) } , ℝ , < ) = inf ( { 𝑥 ∈ ℕ ∣ ( ( 𝑁 lcm 𝑀 ) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) } , ℝ , < ) ) |
26 |
15 25
|
ifbieq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → if ( ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) ∨ 𝑃 = 0 ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ∧ 𝑃 ∥ 𝑥 ) } , ℝ , < ) ) = if ( ( ( 𝑁 lcm 𝑀 ) = 0 ∨ 𝑃 = 0 ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( ( 𝑁 lcm 𝑀 ) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) } , ℝ , < ) ) ) |
27 |
11 26
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 lcm 𝑀 ) lcm 𝑃 ) = if ( ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) ∨ 𝑃 = 0 ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( ( 𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥 ) ∧ 𝑃 ∥ 𝑥 ) } , ℝ , < ) ) ) |
28 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 lcm 𝑃 ) ∈ ℕ0 ) |
29 |
28
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 lcm 𝑃 ) ∈ ℕ0 ) |
30 |
29
|
nn0zd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 lcm 𝑃 ) ∈ ℤ ) |
31 |
|
lcmval |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm 𝑃 ) ∈ ℤ ) → ( 𝑁 lcm ( 𝑀 lcm 𝑃 ) ) = if ( ( 𝑁 = 0 ∨ ( 𝑀 lcm 𝑃 ) = 0 ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 lcm 𝑃 ) ∥ 𝑥 ) } , ℝ , < ) ) ) |
32 |
18 30 31
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 lcm ( 𝑀 lcm 𝑃 ) ) = if ( ( 𝑁 = 0 ∨ ( 𝑀 lcm 𝑃 ) = 0 ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 lcm 𝑃 ) ∥ 𝑥 ) } , ℝ , < ) ) ) |
33 |
|
lcmeq0 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑀 lcm 𝑃 ) = 0 ↔ ( 𝑀 = 0 ∨ 𝑃 = 0 ) ) ) |
34 |
33
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑀 lcm 𝑃 ) = 0 ↔ ( 𝑀 = 0 ∨ 𝑃 = 0 ) ) ) |
35 |
34
|
orbi2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 = 0 ∨ ( 𝑀 lcm 𝑃 ) = 0 ) ↔ ( 𝑁 = 0 ∨ ( 𝑀 = 0 ∨ 𝑃 = 0 ) ) ) ) |
36 |
35
|
bicomd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 = 0 ∨ ( 𝑀 = 0 ∨ 𝑃 = 0 ) ) ↔ ( 𝑁 = 0 ∨ ( 𝑀 lcm 𝑃 ) = 0 ) ) ) |
37 |
9
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℕ ) → 𝑃 ∈ ℤ ) |
38 |
|
lcmdvdsb |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ↔ ( 𝑀 lcm 𝑃 ) ∥ 𝑥 ) ) |
39 |
17 20 37 38
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ↔ ( 𝑀 lcm 𝑃 ) ∥ 𝑥 ) ) |
40 |
39
|
anbi2d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) ↔ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 lcm 𝑃 ) ∥ 𝑥 ) ) ) |
41 |
40
|
rabbidva |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) } = { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 lcm 𝑃 ) ∥ 𝑥 ) } ) |
42 |
41
|
infeq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → inf ( { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) } , ℝ , < ) = inf ( { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 lcm 𝑃 ) ∥ 𝑥 ) } , ℝ , < ) ) |
43 |
36 42
|
ifbieq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → if ( ( 𝑁 = 0 ∨ ( 𝑀 = 0 ∨ 𝑃 = 0 ) ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∨ ( 𝑀 lcm 𝑃 ) = 0 ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 lcm 𝑃 ) ∥ 𝑥 ) } , ℝ , < ) ) ) |
44 |
32 43
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 lcm ( 𝑀 lcm 𝑃 ) ) = if ( ( 𝑁 = 0 ∨ ( 𝑀 = 0 ∨ 𝑃 = 0 ) ) , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑁 ∥ 𝑥 ∧ ( 𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥 ) ) } , ℝ , < ) ) ) |
45 |
5 27 44
|
3eqtr4a |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 lcm 𝑀 ) lcm 𝑃 ) = ( 𝑁 lcm ( 𝑀 lcm 𝑃 ) ) ) |