Metamath Proof Explorer


Theorem lcmfass

Description: Associative law for the _lcm function. (Contributed by AV, 27-Aug-2020)

Ref Expression
Assertion lcmfass YYFinZZFinlcm_lcm_YZ=lcm_Ylcm_Z

Proof

Step Hyp Ref Expression
1 lcmfcl YYFinlcm_Y0
2 1 nn0zd YYFinlcm_Y
3 lcmfsn lcm_Ylcm_lcm_Y=lcm_Y
4 2 3 syl YYFinlcm_lcm_Y=lcm_Y
5 nn0re lcm_Y0lcm_Y
6 nn0ge0 lcm_Y00lcm_Y
7 5 6 jca lcm_Y0lcm_Y0lcm_Y
8 absid lcm_Y0lcm_Ylcm_Y=lcm_Y
9 1 7 8 3syl YYFinlcm_Y=lcm_Y
10 4 9 eqtrd YYFinlcm_lcm_Y=lcm_Y
11 lcmfcl ZZFinlcm_Z0
12 11 nn0zd ZZFinlcm_Z
13 lcmfsn lcm_Zlcm_lcm_Z=lcm_Z
14 12 13 syl ZZFinlcm_lcm_Z=lcm_Z
15 nn0re lcm_Z0lcm_Z
16 nn0ge0 lcm_Z00lcm_Z
17 15 16 jca lcm_Z0lcm_Z0lcm_Z
18 absid lcm_Z0lcm_Zlcm_Z=lcm_Z
19 11 17 18 3syl ZZFinlcm_Z=lcm_Z
20 14 19 eqtr2d ZZFinlcm_Z=lcm_lcm_Z
21 10 20 oveqan12d YYFinZZFinlcm_lcm_Ylcmlcm_Z=lcm_Ylcmlcm_lcm_Z
22 2 snssd YYFinlcm_Y
23 snfi lcm_YFin
24 22 23 jctir YYFinlcm_Ylcm_YFin
25 lcmfun lcm_Ylcm_YFinZZFinlcm_lcm_YZ=lcm_lcm_Ylcmlcm_Z
26 24 25 sylan YYFinZZFinlcm_lcm_YZ=lcm_lcm_Ylcmlcm_Z
27 12 snssd ZZFinlcm_Z
28 snfi lcm_ZFin
29 27 28 jctir ZZFinlcm_Zlcm_ZFin
30 lcmfun YYFinlcm_Zlcm_ZFinlcm_Ylcm_Z=lcm_Ylcmlcm_lcm_Z
31 29 30 sylan2 YYFinZZFinlcm_Ylcm_Z=lcm_Ylcmlcm_lcm_Z
32 21 26 31 3eqtr4d YYFinZZFinlcm_lcm_YZ=lcm_Ylcm_Z