Metamath Proof Explorer


Theorem lcmfnnval

Description: The value of the _lcm function for a subset of the positive integers. (Contributed by AV, 21-Aug-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfnnval ZZFinlcm_Z=supn|mZmn<

Proof

Step Hyp Ref Expression
1 id ZZ
2 nnssz
3 1 2 sstrdi ZZ
4 3 adantr ZZFinZ
5 simpr ZZFinZFin
6 0nnn ¬0
7 6 nelir 0
8 ssel Z0Z0
9 8 nelcon3d Z00Z
10 7 9 mpi Z0Z
11 10 adantr ZZFin0Z
12 lcmfn0val ZZFin0Zlcm_Z=supn|mZmn<
13 4 5 11 12 syl3anc ZZFinlcm_Z=supn|mZmn<