| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 |  | fveq2 |  | 
						
							| 3 |  | abs0 |  | 
						
							| 4 | 2 3 | eqtrdi |  | 
						
							| 5 | 1 4 | eqeq12d |  | 
						
							| 6 |  | lcmcl |  | 
						
							| 7 | 6 | nn0cnd |  | 
						
							| 8 | 7 | anidms |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | zabscl |  | 
						
							| 11 | 10 | zcnd |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | zcn |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 14 15 | absne0d |  | 
						
							| 17 |  | lcmgcd |  | 
						
							| 18 | 17 | anidms |  | 
						
							| 19 |  | gcdid |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 | 13 13 | absmuld |  | 
						
							| 22 | 18 20 21 | 3eqtr3d |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 9 12 12 16 23 | mulcan2ad |  | 
						
							| 25 |  | lcm0val |  | 
						
							| 26 | 5 24 25 | pm2.61ne |  |