Metamath Proof Explorer


Theorem lcvbr2

Description: The covers relation for a left vector space (or a left module). ( cvbr2 analog.) (Contributed by NM, 9-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s S=LSubSpW
lcvfbr.c C=LW
lcvfbr.w φWX
lcvfbr.t φTS
lcvfbr.u φUS
Assertion lcvbr2 φTCUTUsSTssUs=U

Proof

Step Hyp Ref Expression
1 lcvfbr.s S=LSubSpW
2 lcvfbr.c C=LW
3 lcvfbr.w φWX
4 lcvfbr.t φTS
5 lcvfbr.u φUS
6 1 2 3 4 5 lcvbr φTCUTU¬sSTssU
7 iman TssUs=U¬TssU¬s=U
8 anass TssU¬s=UTssU¬s=U
9 dfpss2 sUsU¬s=U
10 9 anbi2i TssUTssU¬s=U
11 8 10 bitr4i TssU¬s=UTssU
12 7 11 xchbinx TssUs=U¬TssU
13 12 ralbii sSTssUs=UsS¬TssU
14 ralnex sS¬TssU¬sSTssU
15 13 14 bitri sSTssUs=U¬sSTssU
16 15 anbi2i TUsSTssUs=UTU¬sSTssU
17 6 16 bitr4di φTCUTUsSTssUs=U