Metamath Proof Explorer


Theorem ldualset

Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in Holland95 p. 218. This allows to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppR ring, for convenience. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualset.v V=BaseW
ldualset.a +˙=+R
ldualset.p ˙=f+˙F×F
ldualset.f F=LFnlW
ldualset.d D=LDualW
ldualset.r R=ScalarW
ldualset.k K=BaseR
ldualset.t ·˙=R
ldualset.o O=opprR
ldualset.s ˙=kK,fFf·˙fV×k
ldualset.w φWX
Assertion ldualset φD=BasendxF+ndx˙ScalarndxOndx˙

Proof

Step Hyp Ref Expression
1 ldualset.v V=BaseW
2 ldualset.a +˙=+R
3 ldualset.p ˙=f+˙F×F
4 ldualset.f F=LFnlW
5 ldualset.d D=LDualW
6 ldualset.r R=ScalarW
7 ldualset.k K=BaseR
8 ldualset.t ·˙=R
9 ldualset.o O=opprR
10 ldualset.s ˙=kK,fFf·˙fV×k
11 ldualset.w φWX
12 elex WXWV
13 fveq2 w=WLFnlw=LFnlW
14 13 4 eqtr4di w=WLFnlw=F
15 14 opeq2d w=WBasendxLFnlw=BasendxF
16 fveq2 w=WScalarw=ScalarW
17 16 6 eqtr4di w=WScalarw=R
18 17 fveq2d w=W+Scalarw=+R
19 18 2 eqtr4di w=W+Scalarw=+˙
20 19 ofeqd w=Wf+Scalarw=f+˙
21 14 sqxpeqd w=WLFnlw×LFnlw=F×F
22 20 21 reseq12d w=Wf+ScalarwLFnlw×LFnlw=f+˙F×F
23 22 3 eqtr4di w=Wf+ScalarwLFnlw×LFnlw=˙
24 23 opeq2d w=W+ndxf+ScalarwLFnlw×LFnlw=+ndx˙
25 17 fveq2d w=WopprScalarw=opprR
26 25 9 eqtr4di w=WopprScalarw=O
27 26 opeq2d w=WScalarndxopprScalarw=ScalarndxO
28 15 24 27 tpeq123d w=WBasendxLFnlw+ndxf+ScalarwLFnlw×LFnlwScalarndxopprScalarw=BasendxF+ndx˙ScalarndxO
29 17 fveq2d w=WBaseScalarw=BaseR
30 29 7 eqtr4di w=WBaseScalarw=K
31 17 fveq2d w=WScalarw=R
32 31 8 eqtr4di w=WScalarw=·˙
33 32 ofeqd w=WfScalarw=f·˙
34 eqidd w=Wf=f
35 fveq2 w=WBasew=BaseW
36 35 1 eqtr4di w=WBasew=V
37 36 xpeq1d w=WBasew×k=V×k
38 33 34 37 oveq123d w=WfScalarwfBasew×k=f·˙fV×k
39 30 14 38 mpoeq123dv w=WkBaseScalarw,fLFnlwfScalarwfBasew×k=kK,fFf·˙fV×k
40 39 10 eqtr4di w=WkBaseScalarw,fLFnlwfScalarwfBasew×k=˙
41 40 opeq2d w=WndxkBaseScalarw,fLFnlwfScalarwfBasew×k=ndx˙
42 41 sneqd w=WndxkBaseScalarw,fLFnlwfScalarwfBasew×k=ndx˙
43 28 42 uneq12d w=WBasendxLFnlw+ndxf+ScalarwLFnlw×LFnlwScalarndxopprScalarwndxkBaseScalarw,fLFnlwfScalarwfBasew×k=BasendxF+ndx˙ScalarndxOndx˙
44 df-ldual LDual=wVBasendxLFnlw+ndxf+ScalarwLFnlw×LFnlwScalarndxopprScalarwndxkBaseScalarw,fLFnlwfScalarwfBasew×k
45 tpex BasendxF+ndx˙ScalarndxOV
46 snex ndx˙V
47 45 46 unex BasendxF+ndx˙ScalarndxOndx˙V
48 43 44 47 fvmpt WVLDualW=BasendxF+ndx˙ScalarndxOndx˙
49 5 48 eqtrid WVD=BasendxF+ndx˙ScalarndxOndx˙
50 11 12 49 3syl φD=BasendxF+ndx˙ScalarndxOndx˙