Metamath Proof Explorer


Theorem leftf

Description: The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion leftf Could not format assertion : No typesetting found for |- _Left : No --> ~P No with typecode |-

Proof

Step Hyp Ref Expression
1 df-left Could not format _Left = ( x e. No |-> { y e. ( _Old ` ( bday ` x ) ) | y { y e. ( _Old ` ( bday ` x ) ) | y
2 bdayelon bdayxOn
3 oldf Old:On𝒫No
4 3 ffvelcdmi bdayxOnOldbdayx𝒫No
5 2 4 mp1i xNoOldbdayx𝒫No
6 5 elpwid xNoOldbdayxNo
7 6 sselda xNoyOldbdayxyNo
8 7 a1d xNoyOldbdayxy<sxyNo
9 8 ralrimiva xNoyOldbdayxy<sxyNo
10 fvex OldbdayxV
11 10 rabex yOldbdayx|y<sxV
12 11 elpw yOldbdayx|y<sx𝒫NoyOldbdayx|y<sxNo
13 rabss yOldbdayx|y<sxNoyOldbdayxy<sxyNo
14 12 13 bitri yOldbdayx|y<sx𝒫NoyOldbdayxy<sxyNo
15 9 14 sylibr xNoyOldbdayx|y<sx𝒫No
16 1 15 fmpti Could not format _Left : No --> ~P No : No typesetting found for |- _Left : No --> ~P No with typecode |-