Description: Transitivity of the less-than relationship. Proposition 5.8 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | legval.p | |
|
legval.d | |
||
legval.i | |
||
legval.l | |
||
legval.g | |
||
legid.a | |
||
legid.b | |
||
legtrd.c | |
||
legtrd.d | |
||
legtrd.e | |
||
legtrd.f | |
||
legtrd.1 | |
||
legtrd.2 | |
||
Assertion | legtrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legval.p | |
|
2 | legval.d | |
|
3 | legval.i | |
|
4 | legval.l | |
|
5 | legval.g | |
|
6 | legid.a | |
|
7 | legid.b | |
|
8 | legtrd.c | |
|
9 | legtrd.d | |
|
10 | legtrd.e | |
|
11 | legtrd.f | |
|
12 | legtrd.1 | |
|
13 | legtrd.2 | |
|
14 | eqid | |
|
15 | 5 | ad4antr | |
16 | 8 | ad4antr | |
17 | 9 | ad4antr | |
18 | simp-4r | |
|
19 | eqid | |
|
20 | 10 | ad4antr | |
21 | simplr | |
|
22 | simpllr | |
|
23 | 22 | simpld | |
24 | 1 14 3 15 16 18 17 23 | btwncolg3 | |
25 | simprr | |
|
26 | 1 14 3 15 16 17 18 19 20 21 2 24 25 | lnext | |
27 | 15 | ad2antrr | |
28 | 20 | ad2antrr | |
29 | simplr | |
|
30 | simp-4r | |
|
31 | 11 | ad6antr | |
32 | 16 | ad2antrr | |
33 | 18 | ad2antrr | |
34 | 17 | ad2antrr | |
35 | simpr | |
|
36 | 1 2 3 19 27 32 34 33 28 30 29 35 | cgr3swap23 | |
37 | 23 | ad2antrr | |
38 | 1 2 3 19 27 32 33 34 28 29 30 36 37 | tgbtwnxfr | |
39 | simpllr | |
|
40 | 39 | simpld | |
41 | 1 2 3 27 28 29 30 31 38 40 | tgbtwnexch | |
42 | simp-5r | |
|
43 | 42 | simprd | |
44 | 1 2 3 19 27 32 33 34 28 29 30 36 | cgr3simp1 | |
45 | 43 44 | eqtrd | |
46 | 41 45 | jca | |
47 | 46 | ex | |
48 | 47 | reximdva | |
49 | 26 48 | mpd | |
50 | 1 2 3 4 5 8 9 10 11 | legov | |
51 | 13 50 | mpbid | |
52 | 51 | ad2antrr | |
53 | 49 52 | r19.29a | |
54 | 1 2 3 4 5 6 7 8 9 | legov | |
55 | 12 54 | mpbid | |
56 | 53 55 | r19.29a | |
57 | 1 2 3 4 5 6 7 10 11 | legov | |
58 | 56 57 | mpbird | |