Metamath Proof Explorer


Theorem legtrd

Description: Transitivity of the less-than relationship. Proposition 5.8 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)

Ref Expression
Hypotheses legval.p P=BaseG
legval.d -˙=distG
legval.i I=ItvG
legval.l ˙=𝒢G
legval.g φG𝒢Tarski
legid.a φAP
legid.b φBP
legtrd.c φCP
legtrd.d φDP
legtrd.e φEP
legtrd.f φFP
legtrd.1 φA-˙B˙C-˙D
legtrd.2 φC-˙D˙E-˙F
Assertion legtrd φA-˙B˙E-˙F

Proof

Step Hyp Ref Expression
1 legval.p P=BaseG
2 legval.d -˙=distG
3 legval.i I=ItvG
4 legval.l ˙=𝒢G
5 legval.g φG𝒢Tarski
6 legid.a φAP
7 legid.b φBP
8 legtrd.c φCP
9 legtrd.d φDP
10 legtrd.e φEP
11 legtrd.f φFP
12 legtrd.1 φA-˙B˙C-˙D
13 legtrd.2 φC-˙D˙E-˙F
14 eqid Line𝒢G=Line𝒢G
15 5 ad4antr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yG𝒢Tarski
16 8 ad4antr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yCP
17 9 ad4antr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yDP
18 simp-4r φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yxP
19 eqid 𝒢G=𝒢G
20 10 ad4antr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yEP
21 simplr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yyP
22 simpllr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yxCIDA-˙B=C-˙x
23 22 simpld φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yxCID
24 1 14 3 15 16 18 17 23 btwncolg3 φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yDCLine𝒢GxC=x
25 simprr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yC-˙D=E-˙y
26 1 14 3 15 16 17 18 19 20 21 2 24 25 lnext φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩
27 15 ad2antrr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩G𝒢Tarski
28 20 ad2antrr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩EP
29 simplr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩zP
30 simp-4r φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩yP
31 11 ad6antr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩FP
32 16 ad2antrr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩CP
33 18 ad2antrr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩xP
34 17 ad2antrr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩DP
35 simpr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩⟨“CDx”⟩𝒢G⟨“Eyz”⟩
36 1 2 3 19 27 32 34 33 28 30 29 35 cgr3swap23 φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩⟨“CxD”⟩𝒢G⟨“Ezy”⟩
37 23 ad2antrr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩xCID
38 1 2 3 19 27 32 33 34 28 29 30 36 37 tgbtwnxfr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩zEIy
39 simpllr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩yEIFC-˙D=E-˙y
40 39 simpld φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩yEIF
41 1 2 3 27 28 29 30 31 38 40 tgbtwnexch φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩zEIF
42 simp-5r φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩xCIDA-˙B=C-˙x
43 42 simprd φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩A-˙B=C-˙x
44 1 2 3 19 27 32 33 34 28 29 30 36 cgr3simp1 φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩C-˙x=E-˙z
45 43 44 eqtrd φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩A-˙B=E-˙z
46 41 45 jca φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩zEIFA-˙B=E-˙z
47 46 ex φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩zEIFA-˙B=E-˙z
48 47 reximdva φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzP⟨“CDx”⟩𝒢G⟨“Eyz”⟩zPzEIFA-˙B=E-˙z
49 26 48 mpd φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙yzPzEIFA-˙B=E-˙z
50 1 2 3 4 5 8 9 10 11 legov φC-˙D˙E-˙FyPyEIFC-˙D=E-˙y
51 13 50 mpbid φyPyEIFC-˙D=E-˙y
52 51 ad2antrr φxPxCIDA-˙B=C-˙xyPyEIFC-˙D=E-˙y
53 49 52 r19.29a φxPxCIDA-˙B=C-˙xzPzEIFA-˙B=E-˙z
54 1 2 3 4 5 6 7 8 9 legov φA-˙B˙C-˙DxPxCIDA-˙B=C-˙x
55 12 54 mpbid φxPxCIDA-˙B=C-˙x
56 53 55 r19.29a φzPzEIFA-˙B=E-˙z
57 1 2 3 4 5 6 7 10 11 legov φA-˙B˙E-˙FzPzEIFA-˙B=E-˙z
58 56 57 mpbird φA-˙B˙E-˙F