Metamath Proof Explorer


Theorem leisorel

Description: Version of isorel for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015) (Revised by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion leisorel FIsom<,<ABA*B*CADACDFCFD

Proof

Step Hyp Ref Expression
1 leiso A*B*FIsom<,<ABFIsom,AB
2 1 biimpcd FIsom<,<ABA*B*FIsom,AB
3 isorel FIsom,ABCADACDFCFD
4 3 ex FIsom,ABCADACDFCFD
5 2 4 syl6 FIsom<,<ABA*B*CADACDFCFD
6 5 3imp FIsom<,<ABA*B*CADACDFCFD