Metamath Proof Explorer


Theorem leloe

Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999)

Ref Expression
Assertion leloe ABABA<BA=B

Proof

Step Hyp Ref Expression
1 lenlt ABAB¬B<A
2 axlttri BAB<A¬B=AA<B
3 2 ancoms ABB<A¬B=AA<B
4 3 con2bid ABB=AA<B¬B<A
5 eqcom B=AA=B
6 5 orbi1i B=AA<BA=BA<B
7 orcom A=BA<BA<BA=B
8 6 7 bitri B=AA<BA<BA=B
9 4 8 bitr3di AB¬B<AA<BA=B
10 1 9 bitrd ABABA<BA=B