Metamath Proof Explorer


Theorem leltne

Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by NM, 27-Jul-1999)

Ref Expression
Assertion leltne ABABA<BBA

Proof

Step Hyp Ref Expression
1 lttri3 ABA=B¬A<B¬B<A
2 simpl ¬A<B¬B<A¬A<B
3 1 2 syl6bi ABA=B¬A<B
4 3 adantr ABABA=B¬A<B
5 leloe ABABA<BA=B
6 5 biimpa ABABA<BA=B
7 6 ord ABAB¬A<BA=B
8 4 7 impbid ABABA=B¬A<B
9 8 necon2abid ABABA<BAB
10 necom BAAB
11 9 10 bitr4di ABABA<BBA
12 11 3impa ABABA<BBA