Metamath Proof Explorer


Theorem lemul12b

Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion lemul12b A0ABCD0DABCDACBD

Proof

Step Hyp Ref Expression
1 lemul2a CDA0ACDACAD
2 1 ex CDA0ACDACAD
3 2 3comr A0ACDCDACAD
4 3 3expb A0ACDCDACAD
5 4 adantrrr A0ACD0DCDACAD
6 5 adantlr A0ABCD0DCDACAD
7 lemul1a ABD0DABADBD
8 7 ex ABD0DABADBD
9 8 ad4ant134 A0ABD0DABADBD
10 9 adantrl A0ABCD0DABADBD
11 6 10 anim12d A0ABCD0DCDABACADADBD
12 11 ancomsd A0ABCD0DABCDACADADBD
13 remulcl ACAC
14 13 adantlr A0ACAC
15 14 ad2ant2r A0ABCD0DAC
16 remulcl ADAD
17 16 ad2ant2r A0AD0DAD
18 17 ad2ant2rl A0ABCD0DAD
19 remulcl BDBD
20 19 adantrr BD0DBD
21 20 ad2ant2l A0ABCD0DBD
22 letr ACADBDACADADBDACBD
23 15 18 21 22 syl3anc A0ABCD0DACADADBDACBD
24 12 23 syld A0ABCD0DABCDACBD