Metamath Proof Explorer


Theorem leoppos

Description: Binary relation defining a positive operator. Definition VI.1 of Retherford p. 49. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoppos THrmOp0hopopTx0Txihx

Proof

Step Hyp Ref Expression
1 0hmop 0hopHrmOp
2 leop 0hopHrmOpTHrmOp0hopopTx0T-op0hopxihx
3 1 2 mpan THrmOp0hopopTx0T-op0hopxihx
4 hmopf THrmOpT:
5 hosubid1 T:T-op0hop=T
6 4 5 syl THrmOpT-op0hop=T
7 6 fveq1d THrmOpT-op0hopx=Tx
8 7 oveq1d THrmOpT-op0hopxihx=Txihx
9 8 breq2d THrmOp0T-op0hopxihx0Txihx
10 9 ralbidv THrmOpx0T-op0hopxihxx0Txihx
11 3 10 bitrd THrmOp0hopopTx0Txihx