Metamath Proof Explorer


Theorem lfl1sc

Description: The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfl1sc.v V=BaseW
lfl1sc.d D=ScalarW
lfl1sc.f F=LFnlW
lfl1sc.k K=BaseD
lfl1sc.t ·˙=D
lfl1sc.i 1˙=1D
lfl1sc.w φWLMod
lfl1sc.g φGF
Assertion lfl1sc φG·˙fV×1˙=G

Proof

Step Hyp Ref Expression
1 lfl1sc.v V=BaseW
2 lfl1sc.d D=ScalarW
3 lfl1sc.f F=LFnlW
4 lfl1sc.k K=BaseD
5 lfl1sc.t ·˙=D
6 lfl1sc.i 1˙=1D
7 lfl1sc.w φWLMod
8 lfl1sc.g φGF
9 1 fvexi VV
10 9 a1i φVV
11 2 4 1 3 lflf WLModGFG:VK
12 7 8 11 syl2anc φG:VK
13 6 fvexi 1˙V
14 13 a1i φ1˙V
15 2 lmodring WLModDRing
16 7 15 syl φDRing
17 4 5 6 ringridm DRingkKk·˙1˙=k
18 16 17 sylan φkKk·˙1˙=k
19 10 12 14 18 caofid0r φG·˙fV×1˙=G