Metamath Proof Explorer


Theorem lfl1sc

Description: The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfl1sc.v V = Base W
lfl1sc.d D = Scalar W
lfl1sc.f F = LFnl W
lfl1sc.k K = Base D
lfl1sc.t · ˙ = D
lfl1sc.i 1 ˙ = 1 D
lfl1sc.w φ W LMod
lfl1sc.g φ G F
Assertion lfl1sc φ G · ˙ f V × 1 ˙ = G

Proof

Step Hyp Ref Expression
1 lfl1sc.v V = Base W
2 lfl1sc.d D = Scalar W
3 lfl1sc.f F = LFnl W
4 lfl1sc.k K = Base D
5 lfl1sc.t · ˙ = D
6 lfl1sc.i 1 ˙ = 1 D
7 lfl1sc.w φ W LMod
8 lfl1sc.g φ G F
9 1 fvexi V V
10 9 a1i φ V V
11 2 4 1 3 lflf W LMod G F G : V K
12 7 8 11 syl2anc φ G : V K
13 6 fvexi 1 ˙ V
14 13 a1i φ 1 ˙ V
15 2 lmodring W LMod D Ring
16 7 15 syl φ D Ring
17 4 5 6 ringridm D Ring k K k · ˙ 1 ˙ = k
18 16 17 sylan φ k K k · ˙ 1 ˙ = k
19 10 12 14 18 caofid0r φ G · ˙ f V × 1 ˙ = G