Metamath Proof Explorer


Theorem lflvsdi2

Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014)

Ref Expression
Hypotheses lfldi.v V=BaseW
lfldi.r R=ScalarW
lfldi.k K=BaseR
lfldi.p +˙=+R
lfldi.t ·˙=R
lfldi.f F=LFnlW
lfldi.w φWLMod
lfldi.x φXK
lfldi2.y φYK
lfldi2.g φGF
Assertion lflvsdi2 φG·˙fV×X+˙fV×Y=G·˙fV×X+˙fG·˙fV×Y

Proof

Step Hyp Ref Expression
1 lfldi.v V=BaseW
2 lfldi.r R=ScalarW
3 lfldi.k K=BaseR
4 lfldi.p +˙=+R
5 lfldi.t ·˙=R
6 lfldi.f F=LFnlW
7 lfldi.w φWLMod
8 lfldi.x φXK
9 lfldi2.y φYK
10 lfldi2.g φGF
11 1 fvexi VV
12 11 a1i φVV
13 2 3 1 6 lflf WLModGFG:VK
14 7 10 13 syl2anc φG:VK
15 fconst6g XKV×X:VK
16 8 15 syl φV×X:VK
17 fconst6g YKV×Y:VK
18 9 17 syl φV×Y:VK
19 2 lmodring WLModRRing
20 7 19 syl φRRing
21 3 4 5 ringdi RRingxKyKzKx·˙y+˙z=x·˙y+˙x·˙z
22 20 21 sylan φxKyKzKx·˙y+˙z=x·˙y+˙x·˙z
23 12 14 16 18 22 caofdi φG·˙fV×X+˙fV×Y=G·˙fV×X+˙fG·˙fV×Y