Metamath Proof Explorer


Theorem lidl1el

Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)

Ref Expression
Hypotheses lidlcl.u U=LIdealR
lidlcl.b B=BaseR
lidl1el.o 1˙=1R
Assertion lidl1el RRingIU1˙II=B

Proof

Step Hyp Ref Expression
1 lidlcl.u U=LIdealR
2 lidlcl.b B=BaseR
3 lidl1el.o 1˙=1R
4 2 1 lidlss IUIB
5 4 ad2antlr RRingIU1˙IIB
6 eqid R=R
7 2 6 3 ringridm RRingaBaR1˙=a
8 7 ad2ant2rl RRingIU1˙IaBaR1˙=a
9 1 2 6 lidlmcl RRingIUaB1˙IaR1˙I
10 9 ancom2s RRingIU1˙IaBaR1˙I
11 8 10 eqeltrrd RRingIU1˙IaBaI
12 11 expr RRingIU1˙IaBaI
13 12 ssrdv RRingIU1˙IBI
14 5 13 eqssd RRingIU1˙II=B
15 14 ex RRingIU1˙II=B
16 2 3 ringidcl RRing1˙B
17 16 adantr RRingIU1˙B
18 eleq2 I=B1˙I1˙B
19 17 18 syl5ibrcom RRingIUI=B1˙I
20 15 19 impbid RRingIU1˙II=B