Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidlcl.u | |
|
lidlcl.b | |
||
lidl1el.o | |
||
Assertion | lidl1el | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlcl.u | |
|
2 | lidlcl.b | |
|
3 | lidl1el.o | |
|
4 | 2 1 | lidlss | |
5 | 4 | ad2antlr | |
6 | eqid | |
|
7 | 2 6 3 | ringridm | |
8 | 7 | ad2ant2rl | |
9 | 1 2 6 | lidlmcl | |
10 | 9 | ancom2s | |
11 | 8 10 | eqeltrrd | |
12 | 11 | expr | |
13 | 12 | ssrdv | |
14 | 5 13 | eqssd | |
15 | 14 | ex | |
16 | 2 3 | ringidcl | |
17 | 16 | adantr | |
18 | eleq2 | |
|
19 | 17 18 | syl5ibrcom | |
20 | 15 19 | impbid | |