Metamath Proof Explorer


Theorem limexissup

Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limexissup LimAAVA=supAOnE

Proof

Step Hyp Ref Expression
1 limuni LimAA=A
2 1 adantr LimAAVA=A
3 limord LimAOrdA
4 ordsson OrdAAOn
5 3 4 syl LimAAOn
6 onsupuni AOnAVsupAOnE=A
7 5 6 sylan LimAAVsupAOnE=A
8 2 7 eqtr4d LimAAVA=supAOnE