Metamath Proof Explorer


Theorem liminfgf

Description: Closure of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfgf.1 G=ksupFk+∞**<
Assertion liminfgf G:*

Proof

Step Hyp Ref Expression
1 liminfgf.1 G=ksupFk+∞**<
2 inss2 Fk+∞**
3 infxrcl Fk+∞**supFk+∞**<*
4 2 3 mp1i ksupFk+∞**<*
5 1 4 fmpti G:*