Metamath Proof Explorer


Theorem liminfgf

Description: Closure of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfgf.1 G = k sup F k +∞ * * <
Assertion liminfgf G : *

Proof

Step Hyp Ref Expression
1 liminfgf.1 G = k sup F k +∞ * * <
2 inss2 F k +∞ * *
3 infxrcl F k +∞ * * sup F k +∞ * * < *
4 2 3 mp1i k sup F k +∞ * * < *
5 1 4 fmpti G : *