Metamath Proof Explorer


Theorem liminfvaluz2

Description: Alternate definition of liminf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvaluz2.k kφ
liminfvaluz2.m φM
liminfvaluz2.z Z=M
liminfvaluz2.b φkZB
Assertion liminfvaluz2 φlim infkZB=lim supkZB

Proof

Step Hyp Ref Expression
1 liminfvaluz2.k kφ
2 liminfvaluz2.m φM
3 liminfvaluz2.z Z=M
4 liminfvaluz2.b φkZB
5 4 rexrd φkZB*
6 1 2 3 5 liminfvaluz φlim infkZB=lim supkZB
7 4 rexnegd φkZB=B
8 1 7 mpteq2da φkZB=kZB
9 8 fveq2d φlim supkZB=lim supkZB
10 9 xnegeqd φlim supkZB=lim supkZB
11 6 10 eqtrd φlim infkZB=lim supkZB