Metamath Proof Explorer


Theorem limnsuc

Description: A limit ordinal is not an element of the class of successor ordinals. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion limnsuc LimA¬AaOn|bOna=sucb

Proof

Step Hyp Ref Expression
1 dflim6 LimAOrdAA¬bOnA=sucb
2 simp3 OrdAA¬bOnA=sucb¬bOnA=sucb
3 eqeq1 a=Aa=sucbA=sucb
4 3 rexbidv a=AbOna=sucbbOnA=sucb
5 4 elrab AaOn|bOna=sucbAOnbOnA=sucb
6 5 simprbi AaOn|bOna=sucbbOnA=sucb
7 2 6 nsyl OrdAA¬bOnA=sucb¬AaOn|bOna=sucb
8 1 7 sylbi LimA¬AaOn|bOna=sucb