Description: A limit ordinal is not an element of the class of successor ordinals. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | limnsuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflim6 | |
|
2 | simp3 | |
|
3 | eqeq1 | |
|
4 | 3 | rexbidv | |
5 | 4 | elrab | |
6 | 5 | simprbi | |
7 | 2 6 | nsyl | |
8 | 1 7 | sylbi | |