Metamath Proof Explorer


Theorem limsupref

Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupref.j _ j F
limsupref.a φ A
limsupref.s φ sup A * < = +∞
limsupref.f φ F : A
limsupref.b φ b k j A k j F j b
Assertion limsupref φ lim sup F

Proof

Step Hyp Ref Expression
1 limsupref.j _ j F
2 limsupref.a φ A
3 limsupref.s φ sup A * < = +∞
4 limsupref.f φ F : A
5 limsupref.b φ b k j A k j F j b
6 breq2 b = y F j b F j y
7 6 imbi2d b = y k j F j b k j F j y
8 7 ralbidv b = y j A k j F j b j A k j F j y
9 breq1 k = i k j i j
10 9 imbi1d k = i k j F j y i j F j y
11 10 ralbidv k = i j A k j F j y j A i j F j y
12 nfv x i j F j y
13 nfv j i x
14 nfcv _ j abs
15 nfcv _ j x
16 1 15 nffv _ j F x
17 14 16 nffv _ j F x
18 nfcv _ j
19 nfcv _ j y
20 17 18 19 nfbr j F x y
21 13 20 nfim j i x F x y
22 breq2 j = x i j i x
23 2fveq3 j = x F j = F x
24 23 breq1d j = x F j y F x y
25 22 24 imbi12d j = x i j F j y i x F x y
26 12 21 25 cbvralw j A i j F j y x A i x F x y
27 26 a1i k = i j A i j F j y x A i x F x y
28 11 27 bitrd k = i j A k j F j y x A i x F x y
29 8 28 cbvrex2vw b k j A k j F j b y i x A i x F x y
30 5 29 sylib φ y i x A i x F x y
31 2 3 4 30 limsupre φ lim sup F