Metamath Proof Explorer


Theorem limsupvaluz3

Description: Alternate definition of liminf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupvaluz3.k k φ
limsupvaluz3.m φ M
limsupvaluz3.z Z = M
limsupvaluz3.b φ k Z B *
Assertion limsupvaluz3 φ lim sup k Z B = lim inf k Z B

Proof

Step Hyp Ref Expression
1 limsupvaluz3.k k φ
2 limsupvaluz3.m φ M
3 limsupvaluz3.z Z = M
4 limsupvaluz3.b φ k Z B *
5 3 fvexi Z V
6 5 a1i φ Z V
7 2 zred φ M
8 simpr φ k Z M +∞ k Z M +∞
9 2 3 uzinico3 φ Z = Z M +∞
10 9 eqcomd φ Z M +∞ = Z
11 10 adantr φ k Z M +∞ Z M +∞ = Z
12 8 11 eleqtrd φ k Z M +∞ k Z
13 12 4 syldan φ k Z M +∞ B *
14 1 6 7 13 limsupval4 φ lim sup k Z B = lim inf k Z B