Metamath Proof Explorer


Theorem limsupvaluz3

Description: Alternate definition of liminf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupvaluz3.k kφ
limsupvaluz3.m φM
limsupvaluz3.z Z=M
limsupvaluz3.b φkZB*
Assertion limsupvaluz3 φlim supkZB=lim infkZB

Proof

Step Hyp Ref Expression
1 limsupvaluz3.k kφ
2 limsupvaluz3.m φM
3 limsupvaluz3.z Z=M
4 limsupvaluz3.b φkZB*
5 3 fvexi ZV
6 5 a1i φZV
7 2 zred φM
8 simpr φkZM+∞kZM+∞
9 2 3 uzinico3 φZ=ZM+∞
10 9 eqcomd φZM+∞=Z
11 10 adantr φkZM+∞ZM+∞=Z
12 8 11 eleqtrd φkZM+∞kZ
13 12 4 syldan φkZM+∞B*
14 1 6 7 13 limsupval4 φlim supkZB=lim infkZB