Metamath Proof Explorer


Theorem lincolss

Description: According to the statement in Lang p. 129, the set ( LSubSpM ) of all linear combinations of a set of vectors V is a submodule (_generated_ by V) of the module M. The elements of V are called generators of ( LSubSpM ) . (Contributed by AV, 12-Apr-2019)

Ref Expression
Assertion lincolss M LMod V 𝒫 Base M M LinCo V LSubSp M

Proof

Step Hyp Ref Expression
1 eqidd M LMod V 𝒫 Base M Scalar M = Scalar M
2 eqidd M LMod V 𝒫 Base M Base Scalar M = Base Scalar M
3 eqidd M LMod V 𝒫 Base M Base M = Base M
4 eqidd M LMod V 𝒫 Base M + M = + M
5 eqidd M LMod V 𝒫 Base M M = M
6 eqidd M LMod V 𝒫 Base M LSubSp M = LSubSp M
7 eqid Base M = Base M
8 eqid Scalar M = Scalar M
9 eqid Base Scalar M = Base Scalar M
10 7 8 9 lcoval M LMod V 𝒫 Base M v M LinCo V v Base M s Base Scalar M V finSupp 0 Scalar M s v = s linC M V
11 simpl v Base M s Base Scalar M V finSupp 0 Scalar M s v = s linC M V v Base M
12 10 11 syl6bi M LMod V 𝒫 Base M v M LinCo V v Base M
13 12 ssrdv M LMod V 𝒫 Base M M LinCo V Base M
14 lcoel0 M LMod V 𝒫 Base M 0 M M LinCo V
15 14 ne0d M LMod V 𝒫 Base M M LinCo V
16 eqid M = M
17 eqid + M = + M
18 16 9 17 lincsumscmcl M LMod V 𝒫 Base M x Base Scalar M a M LinCo V b M LinCo V x M a + M b M LinCo V
19 1 2 3 4 5 6 13 15 18 islssd M LMod V 𝒫 Base M M LinCo V LSubSp M