Metamath Proof Explorer


Theorem lincolss

Description: According to the statement in Lang p. 129, the set ( LSubSpM ) of all linear combinations of a set of vectors V is a submodule (_generated_ by V) of the module M. The elements of V are called generators of ( LSubSpM ) . (Contributed by AV, 12-Apr-2019)

Ref Expression
Assertion lincolss MLModV𝒫BaseMMLinCoVLSubSpM

Proof

Step Hyp Ref Expression
1 eqidd MLModV𝒫BaseMScalarM=ScalarM
2 eqidd MLModV𝒫BaseMBaseScalarM=BaseScalarM
3 eqidd MLModV𝒫BaseMBaseM=BaseM
4 eqidd MLModV𝒫BaseM+M=+M
5 eqidd MLModV𝒫BaseMM=M
6 eqidd MLModV𝒫BaseMLSubSpM=LSubSpM
7 eqid BaseM=BaseM
8 eqid ScalarM=ScalarM
9 eqid BaseScalarM=BaseScalarM
10 7 8 9 lcoval MLModV𝒫BaseMvMLinCoVvBaseMsBaseScalarMVfinSupp0ScalarMsv=slinCMV
11 simpl vBaseMsBaseScalarMVfinSupp0ScalarMsv=slinCMVvBaseM
12 10 11 syl6bi MLModV𝒫BaseMvMLinCoVvBaseM
13 12 ssrdv MLModV𝒫BaseMMLinCoVBaseM
14 lcoel0 MLModV𝒫BaseM0MMLinCoV
15 14 ne0d MLModV𝒫BaseMMLinCoV
16 eqid M=M
17 eqid +M=+M
18 16 9 17 lincsumscmcl MLModV𝒫BaseMxBaseScalarMaMLinCoVbMLinCoVxMa+MbMLinCoV
19 1 2 3 4 5 6 13 15 18 islssd MLModV𝒫BaseMMLinCoVLSubSpM