Description: A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lindfind.s | |
|
lindfind.n | |
||
lindfind.l | |
||
lindfind.z | |
||
lindfind.k | |
||
Assertion | lindsind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindfind.s | |
|
2 | lindfind.n | |
|
3 | lindfind.l | |
|
4 | lindfind.z | |
|
5 | lindfind.k | |
|
6 | simplr | |
|
7 | eldifsn | |
|
8 | 7 | biimpri | |
9 | 8 | adantl | |
10 | elfvdm | |
|
11 | eqid | |
|
12 | 11 1 2 3 5 4 | islinds2 | |
13 | 10 12 | syl | |
14 | 13 | ibi | |
15 | 14 | simprd | |
16 | 15 | ad2antrr | |
17 | oveq2 | |
|
18 | sneq | |
|
19 | 18 | difeq2d | |
20 | 19 | fveq2d | |
21 | 17 20 | eleq12d | |
22 | 21 | notbid | |
23 | oveq1 | |
|
24 | 23 | eleq1d | |
25 | 24 | notbid | |
26 | 22 25 | rspc2va | |
27 | 6 9 16 26 | syl21anc | |