Metamath Proof Explorer


Theorem lindsind

Description: A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses lindfind.s ·˙=W
lindfind.n N=LSpanW
lindfind.l L=ScalarW
lindfind.z 0˙=0L
lindfind.k K=BaseL
Assertion lindsind FLIndSWEFAKA0˙¬A·˙ENFE

Proof

Step Hyp Ref Expression
1 lindfind.s ·˙=W
2 lindfind.n N=LSpanW
3 lindfind.l L=ScalarW
4 lindfind.z 0˙=0L
5 lindfind.k K=BaseL
6 simplr FLIndSWEFAKA0˙EF
7 eldifsn AK0˙AKA0˙
8 7 biimpri AKA0˙AK0˙
9 8 adantl FLIndSWEFAKA0˙AK0˙
10 elfvdm FLIndSWWdomLIndS
11 eqid BaseW=BaseW
12 11 1 2 3 5 4 islinds2 WdomLIndSFLIndSWFBaseWeFaK0˙¬a·˙eNFe
13 10 12 syl FLIndSWFLIndSWFBaseWeFaK0˙¬a·˙eNFe
14 13 ibi FLIndSWFBaseWeFaK0˙¬a·˙eNFe
15 14 simprd FLIndSWeFaK0˙¬a·˙eNFe
16 15 ad2antrr FLIndSWEFAKA0˙eFaK0˙¬a·˙eNFe
17 oveq2 e=Ea·˙e=a·˙E
18 sneq e=Ee=E
19 18 difeq2d e=EFe=FE
20 19 fveq2d e=ENFe=NFE
21 17 20 eleq12d e=Ea·˙eNFea·˙ENFE
22 21 notbid e=E¬a·˙eNFe¬a·˙ENFE
23 oveq1 a=Aa·˙E=A·˙E
24 23 eleq1d a=Aa·˙ENFEA·˙ENFE
25 24 notbid a=A¬a·˙ENFE¬A·˙ENFE
26 22 25 rspc2va EFAK0˙eFaK0˙¬a·˙eNFe¬A·˙ENFE
27 6 9 16 26 syl21anc FLIndSWEFAKA0˙¬A·˙ENFE