Metamath Proof Explorer


Theorem lindslininds

Description: Equivalence of definitions df-linds and df-lininds for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion lindslininds SVMLModSlinIndSMSLIndSM

Proof

Step Hyp Ref Expression
1 eqid ScalarM=ScalarM
2 eqid BaseScalarM=BaseScalarM
3 eqid 0ScalarM=0ScalarM
4 eqid 0M=0M
5 1 2 3 4 lindslinindsimp1 SVMLModS𝒫BaseMfBaseScalarMSfinSupp0ScalarMfflinCMS=0MxSfx=0ScalarMSBaseMsSgBaseScalarM0ScalarM¬gMsLSpanMSs
6 1 2 3 4 lindslinindsimp2 SVMLModSBaseMsSgBaseScalarM0ScalarM¬gMsLSpanMSsS𝒫BaseMfBaseScalarMSfinSupp0ScalarMfflinCMS=0MxSfx=0ScalarM
7 5 6 impbid SVMLModS𝒫BaseMfBaseScalarMSfinSupp0ScalarMfflinCMS=0MxSfx=0ScalarMSBaseMsSgBaseScalarM0ScalarM¬gMsLSpanMSs
8 eqid BaseM=BaseM
9 8 4 1 2 3 islininds SVMLModSlinIndSMS𝒫BaseMfBaseScalarMSfinSupp0ScalarMfflinCMS=0MxSfx=0ScalarM
10 eqid M=M
11 eqid LSpanM=LSpanM
12 8 10 11 1 2 3 islinds2 MLModSLIndSMSBaseMsSgBaseScalarM0ScalarM¬gMsLSpanMSs
13 12 adantl SVMLModSLIndSMSBaseMsSgBaseScalarM0ScalarM¬gMsLSpanMSs
14 7 9 13 3bitr4d SVMLModSlinIndSMSLIndSM