Metamath Proof Explorer


Theorem lindssnlvec

Description: A singleton not containing the zero element of a vector space is always linearly independent. (Contributed by AV, 16-Apr-2019) (Revised by AV, 28-Apr-2019)

Ref Expression
Assertion lindssnlvec MLVecSBaseMS0MSlinIndSM

Proof

Step Hyp Ref Expression
1 eldifsni sBaseScalarM0ScalarMs0ScalarM
2 1 adantl MLVecSBaseMS0MsBaseScalarM0ScalarMs0ScalarM
3 simpl3 MLVecSBaseMS0MsBaseScalarM0ScalarMS0M
4 eqid BaseM=BaseM
5 eqid M=M
6 eqid ScalarM=ScalarM
7 eqid BaseScalarM=BaseScalarM
8 eqid 0ScalarM=0ScalarM
9 eqid 0M=0M
10 simpl1 MLVecSBaseMS0MsBaseScalarM0ScalarMMLVec
11 eldifi sBaseScalarM0ScalarMsBaseScalarM
12 11 adantl MLVecSBaseMS0MsBaseScalarM0ScalarMsBaseScalarM
13 simpl2 MLVecSBaseMS0MsBaseScalarM0ScalarMSBaseM
14 4 5 6 7 8 9 10 12 13 lvecvsn0 MLVecSBaseMS0MsBaseScalarM0ScalarMsMS0Ms0ScalarMS0M
15 2 3 14 mpbir2and MLVecSBaseMS0MsBaseScalarM0ScalarMsMS0M
16 15 ralrimiva MLVecSBaseMS0MsBaseScalarM0ScalarMsMS0M
17 lveclmod MLVecMLMod
18 17 anim1i MLVecSBaseMMLModSBaseM
19 18 3adant3 MLVecSBaseMS0MMLModSBaseM
20 4 6 7 8 9 5 snlindsntor MLModSBaseMsBaseScalarM0ScalarMsMS0MSlinIndSM
21 19 20 syl MLVecSBaseMS0MsBaseScalarM0ScalarMsMS0MSlinIndSM
22 16 21 mpbid MLVecSBaseMS0MSlinIndSM