Description: Any subset of a module over a zero ring is always linearly independent. (Contributed by AV, 27-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | lindszr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 | |
|
2 | eqid | |
|
3 | 2 | lmodring | |
4 | 3 | 3ad2ant1 | |
5 | 0ringnnzr | |
|
6 | 4 5 | syl | |
7 | 1 6 | mpbird | |
8 | 7 | olcd | |
9 | eqid | |
|
10 | eqid | |
|
11 | 9 2 10 | lindsrng01 | |
12 | 8 11 | syld3an2 | |