Metamath Proof Explorer


Theorem lindszr

Description: Any subset of a module over a zero ring is always linearly independent. (Contributed by AV, 27-Apr-2019)

Ref Expression
Assertion lindszr MLMod¬ScalarMNzRingS𝒫BaseMSlinIndSM

Proof

Step Hyp Ref Expression
1 simp2 MLMod¬ScalarMNzRingS𝒫BaseM¬ScalarMNzRing
2 eqid ScalarM=ScalarM
3 2 lmodring MLModScalarMRing
4 3 3ad2ant1 MLMod¬ScalarMNzRingS𝒫BaseMScalarMRing
5 0ringnnzr ScalarMRingBaseScalarM=1¬ScalarMNzRing
6 4 5 syl MLMod¬ScalarMNzRingS𝒫BaseMBaseScalarM=1¬ScalarMNzRing
7 1 6 mpbird MLMod¬ScalarMNzRingS𝒫BaseMBaseScalarM=1
8 7 olcd MLMod¬ScalarMNzRingS𝒫BaseMBaseScalarM=0BaseScalarM=1
9 eqid BaseM=BaseM
10 eqid BaseScalarM=BaseScalarM
11 9 2 10 lindsrng01 MLModBaseScalarM=0BaseScalarM=1S𝒫BaseMSlinIndSM
12 8 11 syld3an2 MLMod¬ScalarMNzRingS𝒫BaseMSlinIndSM