Metamath Proof Explorer


Theorem lkrlsp2

Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014)

Ref Expression
Hypotheses lkrlsp2.v V=BaseW
lkrlsp2.n N=LSpanW
lkrlsp2.p ˙=LSSumW
lkrlsp2.f F=LFnlW
lkrlsp2.k K=LKerW
Assertion lkrlsp2 WLVecXVGF¬XKGKG˙NX=V

Proof

Step Hyp Ref Expression
1 lkrlsp2.v V=BaseW
2 lkrlsp2.n N=LSpanW
3 lkrlsp2.p ˙=LSSumW
4 lkrlsp2.f F=LFnlW
5 lkrlsp2.k K=LKerW
6 simp2l WLVecXVGFGX=0ScalarWXV
7 simp3 WLVecXVGFGX=0ScalarWGX=0ScalarW
8 simp1 WLVecXVGFGX=0ScalarWWLVec
9 simp2r WLVecXVGFGX=0ScalarWGF
10 eqid ScalarW=ScalarW
11 eqid 0ScalarW=0ScalarW
12 1 10 11 4 5 ellkr WLVecGFXKGXVGX=0ScalarW
13 8 9 12 syl2anc WLVecXVGFGX=0ScalarWXKGXVGX=0ScalarW
14 6 7 13 mpbir2and WLVecXVGFGX=0ScalarWXKG
15 14 3expia WLVecXVGFGX=0ScalarWXKG
16 15 necon3bd WLVecXVGF¬XKGGX0ScalarW
17 16 3impia WLVecXVGF¬XKGGX0ScalarW
18 10 11 1 2 3 4 5 lkrlsp WLVecXVGFGX0ScalarWKG˙NX=V
19 17 18 syld3an3 WLVecXVGF¬XKGKG˙NX=V