Metamath Proof Explorer


Theorem lkrlsp3

Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014)

Ref Expression
Hypotheses lkrlsp3.v V = Base W
lkrlsp3.n N = LSpan W
lkrlsp3.f F = LFnl W
lkrlsp3.k K = LKer W
Assertion lkrlsp3 W LVec X V G F ¬ X K G N K G X = V

Proof

Step Hyp Ref Expression
1 lkrlsp3.v V = Base W
2 lkrlsp3.n N = LSpan W
3 lkrlsp3.f F = LFnl W
4 lkrlsp3.k K = LKer W
5 lveclmod W LVec W LMod
6 5 3ad2ant1 W LVec X V G F ¬ X K G W LMod
7 simp2r W LVec X V G F ¬ X K G G F
8 eqid LSubSp W = LSubSp W
9 3 4 8 lkrlss W LMod G F K G LSubSp W
10 6 7 9 syl2anc W LVec X V G F ¬ X K G K G LSubSp W
11 8 2 lspid W LMod K G LSubSp W N K G = K G
12 6 10 11 syl2anc W LVec X V G F ¬ X K G N K G = K G
13 12 uneq1d W LVec X V G F ¬ X K G N K G N X = K G N X
14 13 fveq2d W LVec X V G F ¬ X K G N N K G N X = N K G N X
15 1 3 4 6 7 lkrssv W LVec X V G F ¬ X K G K G V
16 simp2l W LVec X V G F ¬ X K G X V
17 16 snssd W LVec X V G F ¬ X K G X V
18 1 2 lspun W LMod K G V X V N K G X = N N K G N X
19 6 15 17 18 syl3anc W LVec X V G F ¬ X K G N K G X = N N K G N X
20 1 8 2 lspsncl W LMod X V N X LSubSp W
21 6 16 20 syl2anc W LVec X V G F ¬ X K G N X LSubSp W
22 eqid LSSum W = LSSum W
23 8 2 22 lsmsp W LMod K G LSubSp W N X LSubSp W K G LSSum W N X = N K G N X
24 6 10 21 23 syl3anc W LVec X V G F ¬ X K G K G LSSum W N X = N K G N X
25 14 19 24 3eqtr4d W LVec X V G F ¬ X K G N K G X = K G LSSum W N X
26 1 2 22 3 4 lkrlsp2 W LVec X V G F ¬ X K G K G LSSum W N X = V
27 25 26 eqtrd W LVec X V G F ¬ X K G N K G X = V