Metamath Proof Explorer


Theorem lkrval

Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lkrfval.d D=ScalarW
lkrfval.o 0˙=0D
lkrfval.f F=LFnlW
lkrfval.k K=LKerW
Assertion lkrval WXGFKG=G-10˙

Proof

Step Hyp Ref Expression
1 lkrfval.d D=ScalarW
2 lkrfval.o 0˙=0D
3 lkrfval.f F=LFnlW
4 lkrfval.k K=LKerW
5 1 2 3 4 lkrfval WXK=fFf-10˙
6 5 fveq1d WXKG=fFf-10˙G
7 cnvexg GFG-1V
8 imaexg G-1VG-10˙V
9 7 8 syl GFG-10˙V
10 cnveq f=Gf-1=G-1
11 10 imaeq1d f=Gf-10˙=G-10˙
12 eqid fFf-10˙=fFf-10˙
13 11 12 fvmptg GFG-10˙VfFf-10˙G=G-10˙
14 9 13 mpdan GFfFf-10˙G=G-10˙
15 6 14 sylan9eq WXGFKG=G-10˙