Metamath Proof Explorer


Theorem lmat22lem

Description: Lemma for lmat22e11 and co. (Contributed by Thierry Arnoux, 28-Aug-2020)

Ref Expression
Hypotheses lmat22.m M=litMat⟨“⟨“AB”⟩⟨“CD”⟩”⟩
lmat22.a φAV
lmat22.b φBV
lmat22.c φCV
lmat22.d φDV
Assertion lmat22lem φi0..^2⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=2

Proof

Step Hyp Ref Expression
1 lmat22.m M=litMat⟨“⟨“AB”⟩⟨“CD”⟩”⟩
2 lmat22.a φAV
3 lmat22.b φBV
4 lmat22.c φCV
5 lmat22.d φDV
6 simpr φi=0i=0
7 6 fveq2d φi=0⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=⟨“⟨“AB”⟩⟨“CD”⟩”⟩0
8 2 3 s2cld φ⟨“AB”⟩WordV
9 s2fv0 ⟨“AB”⟩WordV⟨“⟨“AB”⟩⟨“CD”⟩”⟩0=⟨“AB”⟩
10 8 9 syl φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩0=⟨“AB”⟩
11 10 adantr φi=0⟨“⟨“AB”⟩⟨“CD”⟩”⟩0=⟨“AB”⟩
12 7 11 eqtrd φi=0⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=⟨“AB”⟩
13 12 fveq2d φi=0⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=⟨“AB”⟩
14 s2len ⟨“AB”⟩=2
15 13 14 eqtrdi φi=0⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=2
16 15 adantlr φi0..^2i=0⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=2
17 simpr φi=1i=1
18 17 fveq2d φi=1⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=⟨“⟨“AB”⟩⟨“CD”⟩”⟩1
19 4 5 s2cld φ⟨“CD”⟩WordV
20 s2fv1 ⟨“CD”⟩WordV⟨“⟨“AB”⟩⟨“CD”⟩”⟩1=⟨“CD”⟩
21 19 20 syl φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩1=⟨“CD”⟩
22 21 adantr φi=1⟨“⟨“AB”⟩⟨“CD”⟩”⟩1=⟨“CD”⟩
23 18 22 eqtrd φi=1⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=⟨“CD”⟩
24 23 fveq2d φi=1⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=⟨“CD”⟩
25 s2len ⟨“CD”⟩=2
26 24 25 eqtrdi φi=1⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=2
27 26 adantlr φi0..^2i=1⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=2
28 fzo0to2pr 0..^2=01
29 28 eleq2i i0..^2i01
30 vex iV
31 30 elpr i01i=0i=1
32 29 31 bitri i0..^2i=0i=1
33 32 biimpi i0..^2i=0i=1
34 33 adantl φi0..^2i=0i=1
35 16 27 34 mpjaodan φi0..^2⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=2