Metamath Proof Explorer


Theorem lmatfval

Description: Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020)

Ref Expression
Hypotheses lmatfval.m M = litMat W
lmatfval.n φ N
lmatfval.w φ W Word Word V
lmatfval.1 φ W = N
lmatfval.2 φ i 0 ..^ N W i = N
lmatfval.i φ I 1 N
lmatfval.j φ J 1 N
Assertion lmatfval φ I M J = W I 1 J 1

Proof

Step Hyp Ref Expression
1 lmatfval.m M = litMat W
2 lmatfval.n φ N
3 lmatfval.w φ W Word Word V
4 lmatfval.1 φ W = N
5 lmatfval.2 φ i 0 ..^ N W i = N
6 lmatfval.i φ I 1 N
7 lmatfval.j φ J 1 N
8 lmatval W Word Word V litMat W = i 1 W , j 1 W 0 W i 1 j 1
9 3 8 syl φ litMat W = i 1 W , j 1 W 0 W i 1 j 1
10 1 9 syl5eq φ M = i 1 W , j 1 W 0 W i 1 j 1
11 simprl φ i = I j = J i = I
12 11 fvoveq1d φ i = I j = J W i 1 = W I 1
13 simprr φ i = I j = J j = J
14 13 oveq1d φ i = I j = J j 1 = J 1
15 12 14 fveq12d φ i = I j = J W i 1 j 1 = W I 1 J 1
16 4 oveq2d φ 1 W = 1 N
17 6 16 eleqtrrd φ I 1 W
18 1m1e0 1 1 = 0
19 nnuz = 1
20 2 19 eleqtrdi φ N 1
21 eluzfz1 N 1 1 1 N
22 20 21 syl φ 1 1 N
23 fz1fzo0m1 1 1 N 1 1 0 ..^ N
24 22 23 syl φ 1 1 0 ..^ N
25 18 24 eqeltrrid φ 0 0 ..^ N
26 simpr φ i = 0 i = 0
27 26 eleq1d φ i = 0 i 0 ..^ N 0 0 ..^ N
28 26 fveq2d φ i = 0 W i = W 0
29 28 fveqeq2d φ i = 0 W i = N W 0 = N
30 27 29 imbi12d φ i = 0 i 0 ..^ N W i = N 0 0 ..^ N W 0 = N
31 5 ex φ i 0 ..^ N W i = N
32 25 30 31 vtocld φ 0 0 ..^ N W 0 = N
33 25 32 mpd φ W 0 = N
34 33 oveq2d φ 1 W 0 = 1 N
35 7 34 eleqtrrd φ J 1 W 0
36 fz1fzo0m1 I 1 N I 1 0 ..^ N
37 6 36 syl φ I 1 0 ..^ N
38 4 oveq2d φ 0 ..^ W = 0 ..^ N
39 37 38 eleqtrrd φ I 1 0 ..^ W
40 wrdsymbcl W Word Word V I 1 0 ..^ W W I 1 Word V
41 3 39 40 syl2anc φ W I 1 Word V
42 fz1fzo0m1 J 1 N J 1 0 ..^ N
43 7 42 syl φ J 1 0 ..^ N
44 simpr φ i = I 1 i = I 1
45 44 eleq1d φ i = I 1 i 0 ..^ N I 1 0 ..^ N
46 44 fveq2d φ i = I 1 W i = W I 1
47 46 fveqeq2d φ i = I 1 W i = N W I 1 = N
48 45 47 imbi12d φ i = I 1 i 0 ..^ N W i = N I 1 0 ..^ N W I 1 = N
49 37 48 31 vtocld φ I 1 0 ..^ N W I 1 = N
50 37 49 mpd φ W I 1 = N
51 50 oveq2d φ 0 ..^ W I 1 = 0 ..^ N
52 43 51 eleqtrrd φ J 1 0 ..^ W I 1
53 wrdsymbcl W I 1 Word V J 1 0 ..^ W I 1 W I 1 J 1 V
54 41 52 53 syl2anc φ W I 1 J 1 V
55 10 15 17 35 54 ovmpod φ I M J = W I 1 J 1