Metamath Proof Explorer


Theorem lmatfval

Description: Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020)

Ref Expression
Hypotheses lmatfval.m M=litMatW
lmatfval.n φN
lmatfval.w φWWordWordV
lmatfval.1 φW=N
lmatfval.2 φi0..^NWi=N
lmatfval.i φI1N
lmatfval.j φJ1N
Assertion lmatfval φIMJ=WI1J1

Proof

Step Hyp Ref Expression
1 lmatfval.m M=litMatW
2 lmatfval.n φN
3 lmatfval.w φWWordWordV
4 lmatfval.1 φW=N
5 lmatfval.2 φi0..^NWi=N
6 lmatfval.i φI1N
7 lmatfval.j φJ1N
8 lmatval WWordWordVlitMatW=i1W,j1W0Wi1j1
9 3 8 syl φlitMatW=i1W,j1W0Wi1j1
10 1 9 eqtrid φM=i1W,j1W0Wi1j1
11 simprl φi=Ij=Ji=I
12 11 fvoveq1d φi=Ij=JWi1=WI1
13 simprr φi=Ij=Jj=J
14 13 oveq1d φi=Ij=Jj1=J1
15 12 14 fveq12d φi=Ij=JWi1j1=WI1J1
16 4 oveq2d φ1W=1N
17 6 16 eleqtrrd φI1W
18 1m1e0 11=0
19 nnuz =1
20 2 19 eleqtrdi φN1
21 eluzfz1 N111N
22 20 21 syl φ11N
23 fz1fzo0m1 11N110..^N
24 22 23 syl φ110..^N
25 18 24 eqeltrrid φ00..^N
26 simpr φi=0i=0
27 26 eleq1d φi=0i0..^N00..^N
28 26 fveq2d φi=0Wi=W0
29 28 fveqeq2d φi=0Wi=NW0=N
30 27 29 imbi12d φi=0i0..^NWi=N00..^NW0=N
31 5 ex φi0..^NWi=N
32 25 30 31 vtocld φ00..^NW0=N
33 25 32 mpd φW0=N
34 33 oveq2d φ1W0=1N
35 7 34 eleqtrrd φJ1W0
36 fz1fzo0m1 I1NI10..^N
37 6 36 syl φI10..^N
38 4 oveq2d φ0..^W=0..^N
39 37 38 eleqtrrd φI10..^W
40 wrdsymbcl WWordWordVI10..^WWI1WordV
41 3 39 40 syl2anc φWI1WordV
42 fz1fzo0m1 J1NJ10..^N
43 7 42 syl φJ10..^N
44 simpr φi=I1i=I1
45 44 eleq1d φi=I1i0..^NI10..^N
46 44 fveq2d φi=I1Wi=WI1
47 46 fveqeq2d φi=I1Wi=NWI1=N
48 45 47 imbi12d φi=I1i0..^NWi=NI10..^NWI1=N
49 37 48 31 vtocld φI10..^NWI1=N
50 37 49 mpd φWI1=N
51 50 oveq2d φ0..^WI1=0..^N
52 43 51 eleqtrrd φJ10..^WI1
53 wrdsymbcl WI1WordVJ10..^WI1WI1J1V
54 41 52 53 syl2anc φWI1J1V
55 10 15 17 35 54 ovmpod φIMJ=WI1J1