Description: Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmatfval.m | |
|
lmatfval.n | |
||
lmatfval.w | |
||
lmatfval.1 | |
||
lmatfval.2 | |
||
lmatfval.i | |
||
lmatfval.j | |
||
Assertion | lmatfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmatfval.m | |
|
2 | lmatfval.n | |
|
3 | lmatfval.w | |
|
4 | lmatfval.1 | |
|
5 | lmatfval.2 | |
|
6 | lmatfval.i | |
|
7 | lmatfval.j | |
|
8 | lmatval | |
|
9 | 3 8 | syl | |
10 | 1 9 | eqtrid | |
11 | simprl | |
|
12 | 11 | fvoveq1d | |
13 | simprr | |
|
14 | 13 | oveq1d | |
15 | 12 14 | fveq12d | |
16 | 4 | oveq2d | |
17 | 6 16 | eleqtrrd | |
18 | 1m1e0 | |
|
19 | nnuz | |
|
20 | 2 19 | eleqtrdi | |
21 | eluzfz1 | |
|
22 | 20 21 | syl | |
23 | fz1fzo0m1 | |
|
24 | 22 23 | syl | |
25 | 18 24 | eqeltrrid | |
26 | simpr | |
|
27 | 26 | eleq1d | |
28 | 26 | fveq2d | |
29 | 28 | fveqeq2d | |
30 | 27 29 | imbi12d | |
31 | 5 | ex | |
32 | 25 30 31 | vtocld | |
33 | 25 32 | mpd | |
34 | 33 | oveq2d | |
35 | 7 34 | eleqtrrd | |
36 | fz1fzo0m1 | |
|
37 | 6 36 | syl | |
38 | 4 | oveq2d | |
39 | 37 38 | eleqtrrd | |
40 | wrdsymbcl | |
|
41 | 3 39 40 | syl2anc | |
42 | fz1fzo0m1 | |
|
43 | 7 42 | syl | |
44 | simpr | |
|
45 | 44 | eleq1d | |
46 | 44 | fveq2d | |
47 | 46 | fveqeq2d | |
48 | 45 47 | imbi12d | |
49 | 37 48 31 | vtocld | |
50 | 37 49 | mpd | |
51 | 50 | oveq2d | |
52 | 43 51 | eleqtrrd | |
53 | wrdsymbcl | |
|
54 | 41 52 53 | syl2anc | |
55 | 10 15 17 35 54 | ovmpod | |