Step |
Hyp |
Ref |
Expression |
1 |
|
lmatfval.m |
|
2 |
|
lmatfval.n |
|
3 |
|
lmatfval.w |
|
4 |
|
lmatfval.1 |
|
5 |
|
lmatfval.2 |
|
6 |
|
lmatfval.i |
|
7 |
|
lmatfval.j |
|
8 |
|
lmatval |
|
9 |
3 8
|
syl |
|
10 |
1 9
|
eqtrid |
|
11 |
|
simprl |
|
12 |
11
|
fvoveq1d |
|
13 |
|
simprr |
|
14 |
13
|
oveq1d |
|
15 |
12 14
|
fveq12d |
|
16 |
4
|
oveq2d |
|
17 |
6 16
|
eleqtrrd |
|
18 |
|
1m1e0 |
|
19 |
|
nnuz |
|
20 |
2 19
|
eleqtrdi |
|
21 |
|
eluzfz1 |
|
22 |
20 21
|
syl |
|
23 |
|
fz1fzo0m1 |
|
24 |
22 23
|
syl |
|
25 |
18 24
|
eqeltrrid |
|
26 |
|
simpr |
|
27 |
26
|
eleq1d |
|
28 |
26
|
fveq2d |
|
29 |
28
|
fveqeq2d |
|
30 |
27 29
|
imbi12d |
|
31 |
5
|
ex |
|
32 |
25 30 31
|
vtocld |
|
33 |
25 32
|
mpd |
|
34 |
33
|
oveq2d |
|
35 |
7 34
|
eleqtrrd |
|
36 |
|
fz1fzo0m1 |
|
37 |
6 36
|
syl |
|
38 |
4
|
oveq2d |
|
39 |
37 38
|
eleqtrrd |
|
40 |
|
wrdsymbcl |
|
41 |
3 39 40
|
syl2anc |
|
42 |
|
fz1fzo0m1 |
|
43 |
7 42
|
syl |
|
44 |
|
simpr |
|
45 |
44
|
eleq1d |
|
46 |
44
|
fveq2d |
|
47 |
46
|
fveqeq2d |
|
48 |
45 47
|
imbi12d |
|
49 |
37 48 31
|
vtocld |
|
50 |
37 49
|
mpd |
|
51 |
50
|
oveq2d |
|
52 |
43 51
|
eleqtrrd |
|
53 |
|
wrdsymbcl |
|
54 |
41 52 53
|
syl2anc |
|
55 |
10 15 17 35 54
|
ovmpod |
|