Description: The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | |
|
ismid.d | |
||
ismid.i | |
||
ismid.g | |
||
ismid.1 | |
||
lmif.m | |
||
lmif.l | |
||
lmif.d | |
||
lmicl.1 | |
||
Assertion | lmiinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | |
|
2 | ismid.d | |
|
3 | ismid.i | |
|
4 | ismid.g | |
|
5 | ismid.1 | |
|
6 | lmif.m | |
|
7 | lmif.l | |
|
8 | lmif.d | |
|
9 | lmicl.1 | |
|
10 | 1 2 3 4 5 6 7 8 9 9 | islmib | |
11 | eqcom | |
|
12 | 11 | a1i | |
13 | eqidd | |
|
14 | 13 | olcd | |
15 | 14 | biantrud | |
16 | 1 2 3 4 5 9 9 | midid | |
17 | 16 | eleq1d | |
18 | 15 17 | bitr3d | |
19 | 10 12 18 | 3bitr3d | |