Metamath Proof Explorer


Theorem lmiinv

Description: The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
lmicl.1 φAP
Assertion lmiinv φMA=AAD

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 lmicl.1 φAP
10 1 2 3 4 5 6 7 8 9 9 islmib φA=MAAmid𝒢GADD𝒢GALAA=A
11 eqcom A=MAMA=A
12 11 a1i φA=MAMA=A
13 eqidd φA=A
14 13 olcd φD𝒢GALAA=A
15 14 biantrud φAmid𝒢GADAmid𝒢GADD𝒢GALAA=A
16 1 2 3 4 5 9 9 midid φAmid𝒢GA=A
17 16 eleq1d φAmid𝒢GADAD
18 15 17 bitr3d φAmid𝒢GADD𝒢GALAA=AAD
19 10 12 18 3bitr3d φMA=AAD