Metamath Proof Explorer


Theorem lmimot

Description: Line mirroring is a motion of the geometric space. Theorem 10.11 of Schwabhauser p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
Assertion lmimot φMGIsmtG

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 1 2 3 4 5 6 7 8 lmif1o φM:P1-1 ontoP
10 4 adantr φaPbPG𝒢Tarski
11 5 adantr φaPbPGDim𝒢2
12 8 adantr φaPbPDranL
13 simprl φaPbPaP
14 simprr φaPbPbP
15 1 2 3 10 11 6 7 12 13 14 lmiiso φaPbPMa-˙Mb=a-˙b
16 15 ralrimivva φaPbPMa-˙Mb=a-˙b
17 1 2 ismot G𝒢TarskiMGIsmtGM:P1-1 ontoPaPbPMa-˙Mb=a-˙b
18 4 17 syl φMGIsmtGM:P1-1 ontoPaPbPMa-˙Mb=a-˙b
19 9 16 18 mpbir2and φMGIsmtG