Metamath Proof Explorer


Theorem lmod0cl

Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod0cl.f F=ScalarW
lmod0cl.k K=BaseF
lmod0cl.z 0˙=0F
Assertion lmod0cl WLMod0˙K

Proof

Step Hyp Ref Expression
1 lmod0cl.f F=ScalarW
2 lmod0cl.k K=BaseF
3 lmod0cl.z 0˙=0F
4 1 lmodring WLModFRing
5 2 3 ring0cl FRing0˙K
6 4 5 syl WLMod0˙K