Description: Scalar multiplication of the vector space by a fixed scalar is an endomorphism of the additive group of vectors. (Contributed by Mario Carneiro, 5-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmodvsghm.v | |
|
lmodvsghm.f | |
||
lmodvsghm.s | |
||
lmodvsghm.k | |
||
Assertion | lmodvsghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsghm.v | |
|
2 | lmodvsghm.f | |
|
3 | lmodvsghm.s | |
|
4 | lmodvsghm.k | |
|
5 | eqid | |
|
6 | lmodgrp | |
|
7 | 6 | adantr | |
8 | 1 2 3 4 | lmodvscl | |
9 | 8 | 3expa | |
10 | 9 | fmpttd | |
11 | 1 5 2 3 4 | lmodvsdi | |
12 | 11 | 3exp2 | |
13 | 12 | imp43 | |
14 | 1 5 | lmodvacl | |
15 | 14 | 3expb | |
16 | 15 | adantlr | |
17 | oveq2 | |
|
18 | eqid | |
|
19 | ovex | |
|
20 | 17 18 19 | fvmpt | |
21 | 16 20 | syl | |
22 | oveq2 | |
|
23 | ovex | |
|
24 | 22 18 23 | fvmpt | |
25 | oveq2 | |
|
26 | ovex | |
|
27 | 25 18 26 | fvmpt | |
28 | 24 27 | oveqan12d | |
29 | 28 | adantl | |
30 | 13 21 29 | 3eqtr4d | |
31 | 1 1 5 5 7 7 10 30 | isghmd | |