Metamath Proof Explorer


Theorem lmodvsghm

Description: Scalar multiplication of the vector space by a fixed scalar is an endomorphism of the additive group of vectors. (Contributed by Mario Carneiro, 5-May-2015)

Ref Expression
Hypotheses lmodvsghm.v V=BaseW
lmodvsghm.f F=ScalarW
lmodvsghm.s ·˙=W
lmodvsghm.k K=BaseF
Assertion lmodvsghm WLModRKxVR·˙xWGrpHomW

Proof

Step Hyp Ref Expression
1 lmodvsghm.v V=BaseW
2 lmodvsghm.f F=ScalarW
3 lmodvsghm.s ·˙=W
4 lmodvsghm.k K=BaseF
5 eqid +W=+W
6 lmodgrp WLModWGrp
7 6 adantr WLModRKWGrp
8 1 2 3 4 lmodvscl WLModRKxVR·˙xV
9 8 3expa WLModRKxVR·˙xV
10 9 fmpttd WLModRKxVR·˙x:VV
11 1 5 2 3 4 lmodvsdi WLModRKyVzVR·˙y+Wz=R·˙y+WR·˙z
12 11 3exp2 WLModRKyVzVR·˙y+Wz=R·˙y+WR·˙z
13 12 imp43 WLModRKyVzVR·˙y+Wz=R·˙y+WR·˙z
14 1 5 lmodvacl WLModyVzVy+WzV
15 14 3expb WLModyVzVy+WzV
16 15 adantlr WLModRKyVzVy+WzV
17 oveq2 x=y+WzR·˙x=R·˙y+Wz
18 eqid xVR·˙x=xVR·˙x
19 ovex R·˙y+WzV
20 17 18 19 fvmpt y+WzVxVR·˙xy+Wz=R·˙y+Wz
21 16 20 syl WLModRKyVzVxVR·˙xy+Wz=R·˙y+Wz
22 oveq2 x=yR·˙x=R·˙y
23 ovex R·˙yV
24 22 18 23 fvmpt yVxVR·˙xy=R·˙y
25 oveq2 x=zR·˙x=R·˙z
26 ovex R·˙zV
27 25 18 26 fvmpt zVxVR·˙xz=R·˙z
28 24 27 oveqan12d yVzVxVR·˙xy+WxVR·˙xz=R·˙y+WR·˙z
29 28 adantl WLModRKyVzVxVR·˙xy+WxVR·˙xz=R·˙y+WR·˙z
30 13 21 29 3eqtr4d WLModRKyVzVxVR·˙xy+Wz=xVR·˙xy+WxVR·˙xz
31 1 1 5 5 7 7 10 30 isghmd WLModRKxVR·˙xWGrpHomW