Metamath Proof Explorer


Theorem lneq2at

Description: A line equals the join of any two of its distinct points (atoms). (Contributed by NM, 29-Apr-2012)

Ref Expression
Hypotheses lneq2at.b B=BaseK
lneq2at.l ˙=K
lneq2at.j ˙=joinK
lneq2at.a A=AtomsK
lneq2at.n N=LinesK
lneq2at.m M=pmapK
Assertion lneq2at KHLXBMXNPAQAPQP˙XQ˙XX=P˙Q

Proof

Step Hyp Ref Expression
1 lneq2at.b B=BaseK
2 lneq2at.l ˙=K
3 lneq2at.j ˙=joinK
4 lneq2at.a A=AtomsK
5 lneq2at.n N=LinesK
6 lneq2at.m M=pmapK
7 simp11 KHLXBMXNPAQAPQP˙XQ˙XKHL
8 simp12 KHLXBMXNPAQAPQP˙XQ˙XXB
9 7 8 jca KHLXBMXNPAQAPQP˙XQ˙XKHLXB
10 simp13 KHLXBMXNPAQAPQP˙XQ˙XMXN
11 1 3 4 5 6 isline3 KHLXBMXNrAsArsX=r˙s
12 11 biimpd KHLXBMXNrAsArsX=r˙s
13 9 10 12 sylc KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙s
14 simp3r KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sX=r˙s
15 simp111 KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sKHL
16 simp121 KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sPA
17 simp122 KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sQA
18 16 17 jca KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sPAQA
19 simp2 KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙srAsA
20 15 18 19 3jca KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sKHLPAQArAsA
21 simp123 KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sPQ
22 20 21 jca KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sKHLPAQArAsAPQ
23 7 hllatd KHLXBMXNPAQAPQP˙XQ˙XKLat
24 simp21 KHLXBMXNPAQAPQP˙XQ˙XPA
25 1 4 atbase PAPB
26 24 25 syl KHLXBMXNPAQAPQP˙XQ˙XPB
27 simp22 KHLXBMXNPAQAPQP˙XQ˙XQA
28 1 4 atbase QAQB
29 27 28 syl KHLXBMXNPAQAPQP˙XQ˙XQB
30 26 29 8 3jca KHLXBMXNPAQAPQP˙XQ˙XPBQBXB
31 23 30 jca KHLXBMXNPAQAPQP˙XQ˙XKLatPBQBXB
32 simp3 KHLXBMXNPAQAPQP˙XQ˙XP˙XQ˙X
33 1 2 3 latjle12 KLatPBQBXBP˙XQ˙XP˙Q˙X
34 33 biimpd KLatPBQBXBP˙XQ˙XP˙Q˙X
35 31 32 34 sylc KHLXBMXNPAQAPQP˙XQ˙XP˙Q˙X
36 35 3ad2ant1 KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sP˙Q˙X
37 36 14 breqtrd KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sP˙Q˙r˙s
38 simpl1 KHLPAQArAsAPQKHL
39 simpl2l KHLPAQArAsAPQPA
40 simpl2r KHLPAQArAsAPQQA
41 simpr KHLPAQArAsAPQPQ
42 simpl3 KHLPAQArAsAPQrAsA
43 2 3 4 ps-1 KHLPAQAPQrAsAP˙Q˙r˙sP˙Q=r˙s
44 38 39 40 41 42 43 syl131anc KHLPAQArAsAPQP˙Q˙r˙sP˙Q=r˙s
45 44 biimpd KHLPAQArAsAPQP˙Q˙r˙sP˙Q=r˙s
46 22 37 45 sylc KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sP˙Q=r˙s
47 14 46 eqtr4d KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sX=P˙Q
48 47 3exp KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sX=P˙Q
49 48 rexlimdvv KHLXBMXNPAQAPQP˙XQ˙XrAsArsX=r˙sX=P˙Q
50 13 49 mpd KHLXBMXNPAQAPQP˙XQ˙XX=P˙Q